Effects of Process Parameters on Morphologies and Microstructures of Laser Melting Deposited V-5Cr-5Ti Alloys

Article Preview

Abstract:

V-Cr-Ti alloys are promising structural materials for future nuclear systems. In this study, a laser melting deposition process has been applied to the fabrications of V-5Cr-5Ti alloys. Laser powers of 1200W, 1400W and 1600W, scanning speeds of 400 mm/min and 600 mm/min, and scanning strategies of single directional scanning and dual directional scanning have been applied to investigate the effects on the morphologies and microstructures of formed individual deposits and thin walls. The dual directional scanning is favored for fabricating thin walls with regular shape, comparing to the single directional scanning. Microstructures of the deposits and walls consist of columnar grains and equiaxed grains. Due to the effects on temperature gradients, both the laser powers and deposition duration show significant effects on the microstructural evolutions of the thin wall samples. As the laser power and deposition duration increase, columnar to equiaxed transitions have been observed. The regions containing columnar grains and equiaxed grains have a <100> fiber texture and a random texture, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-234

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. G. Bobrov, V. V. Iroshnikov, Neutron activation of lithium coolant in the V-5Ti-5Cr alloy circuit, J. Nucl. Mater. s 233–237 (1996) 507–509.

DOI: 10.1016/s0022-3115(96)00055-4

Google Scholar

[2] N. Chaia, L. Portebois, S. Mathieu, N. David, M. Vilasi, On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti, J. Nucl. Mater. 484 (2017) 148-156.

DOI: 10.1016/j.jnucmat.2016.11.027

Google Scholar

[3] C. Ghosh, J. Basu, D. Ramachandran, E. Mohandas, Alloy design and microstructural evolution in V–Ti–Cr alloys, Mater. Charact. 106 (2015) 292-301.

DOI: 10.1016/j.matchar.2015.06.032

Google Scholar

[4] K. Aoyagi, E. P Torres, T. Suda, S. Ohnuki, Effect of hydrogen accumulation on mechanical property and microstructure of V–Cr–Ti alloys, J. Nucl. Mater. s 283–287 (2000) 876-879.

DOI: 10.1016/s0022-3115(00)00140-9

Google Scholar

[5] A. V. Fedorov, Nucleation and growth of helium-vacancy clusters in vanadium and vanadium alloys: V-5Ti, V-3Ti-1Si, V-5Ti-5Cr, J. Nucl. Mater. 233 (1996) 385-389.

DOI: 10.1016/s0022-3115(96)00032-3

Google Scholar

[6] Y. X Gan, H. A Aglan, R. V Steward, B. A Chin, M. L Grossbeck, Microstructure–fracture toughness relationship of vanadium alloy/stainless steel brazed joints, J. Nucl. Mater. 299 (2001) 157-164.

DOI: 10.1016/s0022-3115(01)00677-8

Google Scholar

[7] Y. Li, P. Dong, R. Li, J. Yang, J. Xie, In-situ SEM observation on the fracture of V–5Cr–5Ti alloy, J. Nucl. Mater. 421 (2012) 9-14.

DOI: 10.1016/j.jnucmat.2011.11.043

Google Scholar

[8] K. Natesan, W. K Soppet, Effect of oxygen and oxidation on tensile properties of V-5Cr-5Ti alloy, J. Nucl. Mater. 233-237 (1996) 482-487.

DOI: 10.1016/s0022-3115(96)00235-8

Google Scholar

[9] M. Uz, K. Natesan, V. B. Hang, Oxidation kinetics and microstructure of V-(4–5) wt% Cr-(4–5) wt% Ti alloys exposed to air at 300–650°C, J. Nucl. Mater. 245 (1997) 191-200.

DOI: 10.1016/s0022-3115(97)00008-1

Google Scholar

[10] F. S. Qu, Z. Y. Reng, R. R. Ma, Z. H. Wang, D. M. Chen, The research on the constitutive modeling and hot working characteristics of as-cast V–5Cr–5Ti alloy during hot deformation, J. alloy. compd. 663 (2016) 552-559.

DOI: 10.1016/j.jallcom.2015.12.014

Google Scholar

[11] L. Peng, X. Li, Z. Fan, C. Jiang, P. Zhou, X. Lai, A quasi-in-situ EBSD observation of the transformation from rolling texture to recrystallization texture in V-4Cr-4Ti alloy, Mater. Charact. 126 (2017) 35-41.

DOI: 10.1016/j.matchar.2017.01.037

Google Scholar

[12] Z. Wang, Y. Li, Z. Wang, L. Bo, X. Zhang, L. Chao, Preparation of V-5Cr-5Ti Alloy by Vacuum Arc Remelting, Special Casting & Nonferrous Alloys. 31 (2011) 410-409.

Google Scholar

[13] L. Cheng, Q. Li, X. F. Dong, Q. S. Li, L. X. Peng, Effect of yttrium on microstructure of V-5Cr-5Ti alloys prepared by powder metallurgy, Mater. Sci. & Eng. of Powder Metall. 20 (2015) 14-18.

Google Scholar

[14] L. I. Yu-Fei, C. Luo, Z. Wang, D. Ren, J. Jia, Microstructure of V-4Cr-4Ti alloy fabricated by vacuum arc remelting of consumable electrode, Chin. J. Nonferrous Met. 18 (2008) 805-811.

Google Scholar

[15] V. K. Krishnan, K. Sinnaeruvadi, Rapid Synthesis of V-4Cr-4Ti Alloy/Composite by Field Assisted Sintering Technique, Int. J. Refract. Met. H. 57 (2016) 1-11.

DOI: 10.1016/j.ijrmhm.2016.01.005

Google Scholar

[16] E. C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, Int. J. Mach. Tool. Manu. 46 (2006) 1459–1468.

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[17] D. H. Abbott, F. G. Arcella, Laser forming titanium components, Adv. Mater. Process. 153 (1998) 29-30.

Google Scholar

[18] E. D. Flinn, NASA flexes its artificial muscles, Aerospace Am. 37 (1999) 22.

Google Scholar

[19] W. Kurz, D. J. Fisher, Fundamentals of Solidification, (1998) 71-92.

Google Scholar

[20] X. Li, A. Gagnoud, Y. Fautrelle, Z. Ren, R. Moreau, Y. Zhang, et al., Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field, Acta Mater. 60 (2012).

DOI: 10.1016/j.actamat.2012.02.019

Google Scholar

[21] M. Gäumann, S. Henry, F. Cléton, J. D Wagnière, W. Kurz, Epitaxial laser metal forming: analysis of microstructure formation, Mat. Sci. Eng. A. 271 (1999) 232-241.

DOI: 10.1016/s0921-5093(99)00202-6

Google Scholar

[22] C. M. Liu, X. J. Tian, H. B. Tang, H. M. Wang, Microstructural characterization of laser melting deposited Ti–5Al-5Mo–5V–1Cr–1Fe near β titanium alloy, J. alloy. compd. 572 (2013) 17-24.

DOI: 10.1016/j.jallcom.2013.03.243

Google Scholar

[23] Q. Zhang, J. Chen, X. Lin, H. Tan, W. D. Huang, Grain morphology control and texture characterization of laser solid formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy, J mater. Process. tech. 238 (2016) 202-211.

DOI: 10.1016/j.jmatprotec.2016.07.011

Google Scholar

[24] Q. Zhang, J. Chen, P. Guo, H. Tan, X. Lin, W. Huang, Texture and microstructure characterization in laser additive manufactured Ti–6Al–2Zr–2Sn–3Mo–1.5Cr–2Nb titanium alloy, Mater. Design 88 (2015) 550-557.

DOI: 10.1016/j.matdes.2015.09.053

Google Scholar

[25] H. Tan. Temperature measurement and research on microstructure controlling in laser rapid forming process: Northwestern Polytechnical University; (2005).

Google Scholar

[26] G. M. Le, A. Godfrey, N. Hansen, Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering, Mater. Design 49 (2013) 360-367.

DOI: 10.1016/j.matdes.2013.01.018

Google Scholar

[27] G. M. Le, A. Godfrey, N. Hansen, W. Liu, G. Winther, X. Huang, Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium, Acta Mater. 61 (2013) 7072-7086.

DOI: 10.1016/j.actamat.2013.07.046

Google Scholar

[28] N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum, Acta Mater. 54 (2006) 3055-3066.

DOI: 10.1016/j.actamat.2006.02.046

Google Scholar

[29] H. A. Aglan, Processing orientation - Fracture resistance relationships of V–5Cr–5Ti alloy, Mater. Lett. 62 (2008) 865-869.

DOI: 10.1016/j.matlet.2007.04.119

Google Scholar