[1]
C. Sun, R. Hui, W. Qu, S. Yick, Progress in corrosion resistant materials for supercritical water reactors. Corros. Sci. 51 (2009) 2508-2523.
DOI: 10.1016/j.corsci.2009.07.007
Google Scholar
[2]
G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water. J. Nucl. Mater. 371 (2007) 176-201.
DOI: 10.1016/j.jnucmat.2007.05.017
Google Scholar
[3]
M. Naidin, S. Mokry, F. Baig, Y. Gospodinov, U. Zirn, I. Pioro, G. Naterer, Thermal-Design Options for Pressure-Channel SCWRS With Cogeneration of Hydrogen. J. Eng. Gas. Turb. Power, 131 (2009) 012901.
DOI: 10.1115/1.2983016
Google Scholar
[4]
S. Baindur, Materials challenges for the supercritical water-cooled reactor (SCWR). Bullet. Canad. Nucl. Soci, 29 (2008) 32-38.
Google Scholar
[5]
J. Buongiorno, P. MacDonald, Supercritical water reactor (SCWR). Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the US, INEEL/Ext-03-03-01210, INEEL, USA, September, (2003).
Google Scholar
[6]
S. Nemat-Nasser, W. -G. Guo, D.P. Kihl, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J Mech. Phys. Solids, 49 (2001) 1823-1846.
DOI: 10.1016/s0022-5096(00)00069-7
Google Scholar
[7]
A.J. Sedriks, Corrosion of stainless steel, 2 (1996).
Google Scholar
[8]
F. Abed, G. Voyiadjis, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals. Int. J Plasticity, 21 (2005) 1618-1639.
DOI: 10.1016/j.ijplas.2004.11.003
Google Scholar
[9]
B. Metrovich, Fatigue strength of welded AL-6XN superaustenitic stainless steel. Int. J Fatigue, 25(9-11) (2003) 1309-1315.
DOI: 10.1016/s0142-1123(03)00123-3
Google Scholar
[10]
M. Qian, J.N. DuPont, Microsegregation-related pitting corrosion characteristics of AL-6XN superaustenitic stainless steel laser welds. Corros. Sci. 52 (2010) 3548-3553.
DOI: 10.1016/j.corsci.2010.07.007
Google Scholar
[11]
S. Kalnaus, Y. Jiang, Fatigue of AL6XN stainless steel. J Eng. Mater. Tech. 130 (2008) 031013.
Google Scholar
[12]
R. Andreani, E. Diegele, R. Laesser, B. van der Schaaf, The European integrated materials and technology programme in fusion. J. Nucl. Mater. 329-333 (2004) 20-30.
DOI: 10.1016/j.jnucmat.2004.04.339
Google Scholar
[13]
M. Miyamoto, K. Ono, K. Arakawa, R.C. Birtcher, Effects of cascade damages on the dynamical behavior of helium bubbles in Cu. J. Nucl. Mater. 367-370 (2007) 350-354.
DOI: 10.1016/j.jnucmat.2007.03.129
Google Scholar
[14]
E.E. Bloom, S.J. Zinkle, F.W. Wiffen, Materials to deliver the promise of fusion power – progress and challenges. J. Nucl. Mater. 329-333 (2004) 12-19.
DOI: 10.1016/j.jnucmat.2004.04.141
Google Scholar
[15]
K. Forsberg, A.R. Massih, Kinetics of fission product gas release during grain growth. Model. Simul. Mater. Sc. 15 (2007) 335-353.
DOI: 10.1088/0965-0393/15/3/011
Google Scholar
[16]
C. Windsor, G. Cottrell, R. Kemp, A framework for predicting the yield stress, Charpy toughness and one hundred-year activation level for irradiated fusion power plant alloys. Model. Simul. Mater. Sc. 19 (2011) 035005.
DOI: 10.1088/0965-0393/19/3/035005
Google Scholar
[17]
A.L. Dunn, Simulating radiation damage accumulation in α-Fe: A spatially resolved stochastic cluster dynamics approach. Compu. Mater. Sci. 102 (2015) 13.
Google Scholar
[18]
Q. Xu, N. Yoshida, T. Yoshiie, Accumulation of helium in tungsten irradiated by helium and neutrons. J. Nucl. Mater. 367-370 (2007) 806-811.
DOI: 10.1016/j.jnucmat.2007.03.078
Google Scholar
[19]
S.G.N.M. Sharafat, Comparison of a microstructure evolution model with experiments on irradiated vanadium. J. Nucl. Mater. 283(Part 2) (2000) 5.
Google Scholar
[20]
E. Meslin, A. Barbu, L. Boulanger, B. Radiguet, P. Pareige, K. Arakawa, C.C. Fu, Cluster-dynamics modelling of defects in α-iron under cascade damage conditions. J. Nucl. Mater. 382 (2008) 190-196.
DOI: 10.1016/j.jnucmat.2008.08.010
Google Scholar
[21]
D. Xu, B.D. Wirth, Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation. J. Nucl. Mater. 403 (2010) 184-190.
DOI: 10.1016/j.jnucmat.2010.06.025
Google Scholar
[22]
K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, H. Mori, Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science, 318(5852) (2007) 956-959.
DOI: 10.1126/science.1145386
Google Scholar
[23]
M. Kiritani, Defect interaction processes controlling the accumulation of defects produced by high energy recoils. J. Nucl. Mater. 251 (1997) 15.
DOI: 10.1016/s0022-3115(97)00278-x
Google Scholar
[24]
K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono, H. Mori, Changes in the Burgers Vector of Perfect Dislocation Loops without Contact with the External Dislocations. Phys. Rev. Lett. 96 (2006) 125506.
DOI: 10.1103/physrevlett.96.125506
Google Scholar
[25]
J. Gan, G. Was, R. Stoller, Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor condition. J. Nucl. Mater. 299 (2001) 53-67.
DOI: 10.1016/s0022-3115(01)00673-0
Google Scholar
[26]
R.E. Stoller, G.R. Odette, A composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation; proceedings of the Radiation-Induced Changes in Microstructure, 13th International Symposium, ASTM STP, F, (1987).
DOI: 10.1520/stp33831s
Google Scholar
[27]
C. Pokor, Y. Brechet, P. Dubuisson, J. -P. Massoud, A. Barbu, Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure. J. Nucl. Mater. 326 (2004) 19-29.
DOI: 10.1016/j.jnucmat.2003.11.007
Google Scholar
[28]
T. Yoshiie, Q. Xu, K. Sato, K. Kikuchi, M. Kawai, Reaction kinetics analysis of damage evolution in accelerator driven system beam windows. J. Nucl. Mater. 377 (2008) 132-5.
DOI: 10.1016/j.jnucmat.2008.02.059
Google Scholar
[29]
D. Terentyev, I. Martin-Bragado, Evolution of dislocation loops in iron under irradiation: The impact of carbon. Scripta Mater. 97 (2015) 5-8.
DOI: 10.1016/j.scriptamat.2014.10.021
Google Scholar
[30]
G.S. Was, Fundamentals of radiation materials science: metals and alloys. Springer Science & Business Media, (2007).
Google Scholar
[31]
Y. Katoh, T. Muroga, A. Kohyama, R.E. Stoller, C. Namba, Rate theory modeling of defect evolution under cascade damage conditions: the influence of vacancy-type cascade remnants on defect evolution. J. Nucl. Mater. 233 (1996) 1022-1028.
DOI: 10.1016/s0022-3115(96)00088-8
Google Scholar
[32]
C. Dimitrov, O. Dimitrov, Composition dependence of defect properties in electron-irradiated Fe-Cr-Ni solid solutions. J Phys. F: Metal Phys. 14 (1984) 793.
DOI: 10.1088/0305-4608/14/4/005
Google Scholar
[33]
Y. Katoh, R.E. Stoller, Y. Kohno, A. Kohyama, The influence of He/dpa ratio and displacement rate on microstructural evolution: a comparison of theory and experiment. J. Nucl. Mater. 210 (1994) 290-302.
DOI: 10.1016/0022-3115(94)90183-x
Google Scholar
[34]
Y. Katoh, A. Kohyama, A computational study of defects evolution during irradiation in single-phase austenitic alloys. Materials Transactions, JIM, 34 (1993) 999-1005.
DOI: 10.2320/matertrans1989.34.999
Google Scholar
[35]
F. Christien, A. Barbu, Modelling of copper precipitation in iron during thermal aging and irradiation. J. Nucl. Mater. 324 (2004) 90-96.
DOI: 10.1016/j.jnucmat.2003.08.035
Google Scholar
[36]
A.H. Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations. J. Nucl. Mater. 302 (2002) 143-155.
DOI: 10.1016/s0022-3115(02)00776-6
Google Scholar
[37]
W. Phythian, R. Stoller, A. Foreman, A. Calder, D. Bacon, A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 22 (1995) 245-261.
DOI: 10.1016/0022-3115(95)00022-4
Google Scholar
[38]
Y. Naoaki, Evolution of microstructure in Fe-Cr-Ni austenitic alloys during irradiation. J. Nucl. Mater. 205 (1993) 344-353.
DOI: 10.1016/0022-3115(93)90099-k
Google Scholar
[39]
M. Caturla, N. Soneda, E. Alonso, B. Wirth, T.D. de la Rubia, J. Perlado, Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276 (2000) 13-21.
DOI: 10.1016/s0022-3115(99)00220-2
Google Scholar
[40]
H. Trinkaus, B. Singh, A. Foreman, Impact of glissile interstitial loop production in cascades on defect accumulation in the transient. J. Nucl. Mater. 206 (1993) 200-211.
DOI: 10.1016/0022-3115(93)90124-h
Google Scholar