Rate Theory for Dislocation Loops Evolution in AL-6XN Austenitic Stainless Steel under Proton Irradiation

Article Preview

Abstract:

The average size and density evolution of dislocation loops in AL-6XN austenitic stainless steel, a candidate fuel cladding material for supercritical water-cooled reactor, under proton irradiation were simulated through a rate theory model. The simulation results exhibit relatively good agreement with the experimental results at 563 K. The size and density of defect clusters are calculated under irradiation temperature between 550 K and 900 K and irradiation doses up to 15 dpa which satisfies the working condition in supercritical water-cooled reactor. The fast nucleation between self-interstitials happens at the initial stage of irradiation. The average size of dislocation loops increases while the average density of these loops reduces with the increasing temperature, and the average density approaches to a constant when irradiated at higher irradiation doses. The mechanism is discussed based on the variation of rate constants of defect reactions and the variation of the diffusion coefficients of interstitials and dislocation loops with dose and temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-246

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sun, R. Hui, W. Qu, S. Yick, Progress in corrosion resistant materials for supercritical water reactors. Corros. Sci. 51 (2009) 2508-2523.

DOI: 10.1016/j.corsci.2009.07.007

Google Scholar

[2] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water. J. Nucl. Mater. 371 (2007) 176-201.

DOI: 10.1016/j.jnucmat.2007.05.017

Google Scholar

[3] M. Naidin, S. Mokry, F. Baig, Y. Gospodinov, U. Zirn, I. Pioro, G. Naterer, Thermal-Design Options for Pressure-Channel SCWRS With Cogeneration of Hydrogen. J. Eng. Gas. Turb. Power, 131 (2009) 012901.

DOI: 10.1115/1.2983016

Google Scholar

[4] S. Baindur, Materials challenges for the supercritical water-cooled reactor (SCWR). Bullet. Canad. Nucl. Soci, 29 (2008) 32-38.

Google Scholar

[5] J. Buongiorno, P. MacDonald, Supercritical water reactor (SCWR). Progress Report for the FY-03 Generation-IV R&D Activities for the Development of the SCWR in the US, INEEL/Ext-03-03-01210, INEEL, USA, September, (2003).

Google Scholar

[6] S. Nemat-Nasser, W. -G. Guo, D.P. Kihl, Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures. J Mech. Phys. Solids, 49 (2001) 1823-1846.

DOI: 10.1016/s0022-5096(00)00069-7

Google Scholar

[7] A.J. Sedriks, Corrosion of stainless steel, 2 (1996).

Google Scholar

[8] F. Abed, G. Voyiadjis, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals. Int. J Plasticity, 21 (2005) 1618-1639.

DOI: 10.1016/j.ijplas.2004.11.003

Google Scholar

[9] B. Metrovich, Fatigue strength of welded AL-6XN superaustenitic stainless steel. Int. J Fatigue, 25(9-11) (2003) 1309-1315.

DOI: 10.1016/s0142-1123(03)00123-3

Google Scholar

[10] M. Qian, J.N. DuPont, Microsegregation-related pitting corrosion characteristics of AL-6XN superaustenitic stainless steel laser welds. Corros. Sci. 52 (2010) 3548-3553.

DOI: 10.1016/j.corsci.2010.07.007

Google Scholar

[11] S. Kalnaus, Y. Jiang, Fatigue of AL6XN stainless steel. J Eng. Mater. Tech. 130 (2008) 031013.

Google Scholar

[12] R. Andreani, E. Diegele, R. Laesser, B. van der Schaaf, The European integrated materials and technology programme in fusion. J. Nucl. Mater. 329-333 (2004) 20-30.

DOI: 10.1016/j.jnucmat.2004.04.339

Google Scholar

[13] M. Miyamoto, K. Ono, K. Arakawa, R.C. Birtcher, Effects of cascade damages on the dynamical behavior of helium bubbles in Cu. J. Nucl. Mater. 367-370 (2007) 350-354.

DOI: 10.1016/j.jnucmat.2007.03.129

Google Scholar

[14] E.E. Bloom, S.J. Zinkle, F.W. Wiffen, Materials to deliver the promise of fusion power – progress and challenges. J. Nucl. Mater. 329-333 (2004) 12-19.

DOI: 10.1016/j.jnucmat.2004.04.141

Google Scholar

[15] K. Forsberg, A.R. Massih, Kinetics of fission product gas release during grain growth. Model. Simul. Mater. Sc. 15 (2007) 335-353.

DOI: 10.1088/0965-0393/15/3/011

Google Scholar

[16] C. Windsor, G. Cottrell, R. Kemp, A framework for predicting the yield stress, Charpy toughness and one hundred-year activation level for irradiated fusion power plant alloys. Model. Simul. Mater. Sc. 19 (2011) 035005.

DOI: 10.1088/0965-0393/19/3/035005

Google Scholar

[17] A.L. Dunn, Simulating radiation damage accumulation in α-Fe: A spatially resolved stochastic cluster dynamics approach. Compu. Mater. Sci. 102 (2015) 13.

Google Scholar

[18] Q. Xu, N. Yoshida, T. Yoshiie, Accumulation of helium in tungsten irradiated by helium and neutrons. J. Nucl. Mater. 367-370 (2007) 806-811.

DOI: 10.1016/j.jnucmat.2007.03.078

Google Scholar

[19] S.G.N.M. Sharafat, Comparison of a microstructure evolution model with experiments on irradiated vanadium. J. Nucl. Mater. 283(Part 2) (2000) 5.

Google Scholar

[20] E. Meslin, A. Barbu, L. Boulanger, B. Radiguet, P. Pareige, K. Arakawa, C.C. Fu, Cluster-dynamics modelling of defects in α-iron under cascade damage conditions. J. Nucl. Mater. 382 (2008) 190-196.

DOI: 10.1016/j.jnucmat.2008.08.010

Google Scholar

[21] D. Xu, B.D. Wirth, Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation. J. Nucl. Mater. 403 (2010) 184-190.

DOI: 10.1016/j.jnucmat.2010.06.025

Google Scholar

[22] K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, H. Mori, Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science, 318(5852) (2007) 956-959.

DOI: 10.1126/science.1145386

Google Scholar

[23] M. Kiritani, Defect interaction processes controlling the accumulation of defects produced by high energy recoils. J. Nucl. Mater. 251 (1997) 15.

DOI: 10.1016/s0022-3115(97)00278-x

Google Scholar

[24] K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono, H. Mori, Changes in the Burgers Vector of Perfect Dislocation Loops without Contact with the External Dislocations. Phys. Rev. Lett. 96 (2006) 125506.

DOI: 10.1103/physrevlett.96.125506

Google Scholar

[25] J. Gan, G. Was, R. Stoller, Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor condition. J. Nucl. Mater. 299 (2001) 53-67.

DOI: 10.1016/s0022-3115(01)00673-0

Google Scholar

[26] R.E. Stoller, G.R. Odette, A composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation; proceedings of the Radiation-Induced Changes in Microstructure, 13th International Symposium, ASTM STP, F, (1987).

DOI: 10.1520/stp33831s

Google Scholar

[27] C. Pokor, Y. Brechet, P. Dubuisson, J. -P. Massoud, A. Barbu, Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure. J. Nucl. Mater. 326 (2004) 19-29.

DOI: 10.1016/j.jnucmat.2003.11.007

Google Scholar

[28] T. Yoshiie, Q. Xu, K. Sato, K. Kikuchi, M. Kawai, Reaction kinetics analysis of damage evolution in accelerator driven system beam windows. J. Nucl. Mater. 377 (2008) 132-5.

DOI: 10.1016/j.jnucmat.2008.02.059

Google Scholar

[29] D. Terentyev, I. Martin-Bragado, Evolution of dislocation loops in iron under irradiation: The impact of carbon. Scripta Mater. 97 (2015) 5-8.

DOI: 10.1016/j.scriptamat.2014.10.021

Google Scholar

[30] G.S. Was, Fundamentals of radiation materials science: metals and alloys. Springer Science & Business Media, (2007).

Google Scholar

[31] Y. Katoh, T. Muroga, A. Kohyama, R.E. Stoller, C. Namba, Rate theory modeling of defect evolution under cascade damage conditions: the influence of vacancy-type cascade remnants on defect evolution. J. Nucl. Mater. 233 (1996) 1022-1028.

DOI: 10.1016/s0022-3115(96)00088-8

Google Scholar

[32] C. Dimitrov, O. Dimitrov, Composition dependence of defect properties in electron-irradiated Fe-Cr-Ni solid solutions. J Phys. F: Metal Phys. 14 (1984) 793.

DOI: 10.1088/0305-4608/14/4/005

Google Scholar

[33] Y. Katoh, R.E. Stoller, Y. Kohno, A. Kohyama, The influence of He/dpa ratio and displacement rate on microstructural evolution: a comparison of theory and experiment. J. Nucl. Mater. 210 (1994) 290-302.

DOI: 10.1016/0022-3115(94)90183-x

Google Scholar

[34] Y. Katoh, A. Kohyama, A computational study of defects evolution during irradiation in single-phase austenitic alloys. Materials Transactions, JIM, 34 (1993) 999-1005.

DOI: 10.2320/matertrans1989.34.999

Google Scholar

[35] F. Christien, A. Barbu, Modelling of copper precipitation in iron during thermal aging and irradiation. J. Nucl. Mater. 324 (2004) 90-96.

DOI: 10.1016/j.jnucmat.2003.08.035

Google Scholar

[36] A.H. Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations. J. Nucl. Mater. 302 (2002) 143-155.

DOI: 10.1016/s0022-3115(02)00776-6

Google Scholar

[37] W. Phythian, R. Stoller, A. Foreman, A. Calder, D. Bacon, A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 22 (1995) 245-261.

DOI: 10.1016/0022-3115(95)00022-4

Google Scholar

[38] Y. Naoaki, Evolution of microstructure in Fe-Cr-Ni austenitic alloys during irradiation. J. Nucl. Mater. 205 (1993) 344-353.

DOI: 10.1016/0022-3115(93)90099-k

Google Scholar

[39] M. Caturla, N. Soneda, E. Alonso, B. Wirth, T.D. de la Rubia, J. Perlado, Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276 (2000) 13-21.

DOI: 10.1016/s0022-3115(99)00220-2

Google Scholar

[40] H. Trinkaus, B. Singh, A. Foreman, Impact of glissile interstitial loop production in cascades on defect accumulation in the transient. J. Nucl. Mater. 206 (1993) 200-211.

DOI: 10.1016/0022-3115(93)90124-h

Google Scholar