[1]
Mali S, Misra RDK, Somani MC, Karjalainen LP. Biomimetic nanostructured coatings on nano-grained/ultrafine-grained substrate: Microstructure, surface adhesion strength, and biosolubility. Materials Science and Engineering: C 29 (2009) 2417.
DOI: 10.1016/j.msec.2009.07.003
Google Scholar
[2]
Gavriljuk VG, Tyshchenko AI, Bliznuk VV, Yakovleva IL, Riedner S, Berns H. Cold Work Hardening of High-Strength Austenitic Steels. STEEL RES INT 79 (2008) 413.
DOI: 10.1002/srin.200806147
Google Scholar
[3]
Huang HW, Wang ZB, Lu J, Lu K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. ACTA MATER 87 (2015) 150.
DOI: 10.1016/j.actamat.2014.12.057
Google Scholar
[4]
Song M, Guan K, Qin W, Szpunar JA, Chen J. Size effect criteria on the small punch test for AISI 316L austenitic stainless steel. Materials Science and Engineering: A 606 (2014) 346.
DOI: 10.1016/j.msea.2014.03.098
Google Scholar
[5]
Kumar BR, Sharma S. Recrystallization behavior of a heavily deformed austenitic stainless steel during iterative type annealing. Metallurgical and Materials Transactions A 45 (2014) 6027.
DOI: 10.1007/s11661-014-2543-3
Google Scholar
[6]
Misra R, Thein-Han WW, Pesacreta TC, Somani MC, Karjalainen LP. Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts. ACTA BIOMATER 6 (2010) 3339.
DOI: 10.1016/j.actbio.2010.01.034
Google Scholar
[7]
Misra R, Nune C, Pesacreta TC, Somani MC, Karjalainen LP. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence. ACTA BIOMATER 9 (2013).
DOI: 10.1016/j.actbio.2012.12.003
Google Scholar
[8]
Q WY. Achievements of NG Steels program in China. Proceedings of Second International Conference on Advanced Structural Steels (ICASS 2004). Shanghai, (2004).
Google Scholar
[9]
Misra R, Thein-Han WW, Pesacreta TC, Hasenstein KH, Somani MC, Karjalainen LP. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures. ACTA BIOMATER 5 (2009) 1455.
DOI: 10.1016/j.actbio.2008.12.017
Google Scholar
[10]
Misra R, Zhang Z, Jia Z, Venkatsurya P, Somani MC, Karjalainen LP. Nanoscale deformation experiments on the strain rate sensitivity of phase reversion induced nanograined/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart. Materials Science and Engineering: A 548 (2012).
DOI: 10.1016/j.msea.2012.04.005
Google Scholar
[11]
Hwang B, Lee CG. Influence of thermomechanical processing and heat treatments on tensile and Charpy impact properties of B and Cu bearing high-strength low-alloy steels. Materials Science and Engineering: A 527 (2010) 4341.
DOI: 10.1016/j.msea.2010.03.106
Google Scholar
[12]
Yakubtsov IA, Poruks P, Boyd JD. Microstructure and mechanical properties of bainitic low carbon high strength plate steels. Materials Science and Engineering: A 480 (2008) 109.
DOI: 10.1016/j.msea.2007.06.069
Google Scholar
[13]
Muszka K, Hodgson PD, Majta J. Study of the effect of grain size on the dynamic mechanical properties of microalloyed steels. Materials Science and Engineering: A 500 (2009) 25.
DOI: 10.1016/j.msea.2008.09.069
Google Scholar
[14]
Wang TS, Zhang FC, Zhang M, Lv B. Materials Science and Engineering: A 485 (2008) 456.
Google Scholar
[15]
H A, M M, J PW. A novel technique for developing bimodal grain size distributions in low carbon steels. SCRIPTA MATER 12 (2007) 1065.
DOI: 10.1016/j.scriptamat.2007.08.035
Google Scholar
[16]
Moat RJ, Zhang SY, Kelleher J, Mark AF, Mori T, Withers PJ. ACTA MATER 60 (2012) 6931.
Google Scholar
[17]
Kisko A, Hamada AS, Talonen J, Porter D, Karjalainen LP. Materials Science and Engineering: A 657 (2016) 359.
Google Scholar
[18]
Huibin W, Fengjuan W, Shanwu Y, Di T. The formation mechanism of austenite structyre with micro/submicrometer bimodel grain size distribution. Acta Metallurgica Sinica 03 (2014) 269.
Google Scholar
[19]
Yongning Y; Fundamentals of Materials Science. Beijing: Higher Education Press, (2012).
Google Scholar
[20]
Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyr L Inen A. Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels. 40 (2009) 729.
DOI: 10.1007/s11661-008-9723-y
Google Scholar
[21]
Ravi Kumar B, Sharma S. Recrystallization Behavior of a Heavily Deformed Austenitic Stainless Steel During Iterative Type Annealing. 45 (2014) 6027.
DOI: 10.1007/s11661-014-2543-3
Google Scholar
[22]
Law NC, Edmonds DV. The Formation of Austenite in a Low-Alloy Steel. Metallurgical Transactions A 11A (1980) 33.
Google Scholar
[23]
Nakada N, Tsuchiyama T, Takaki S, Hashizume S. Variant Selection of Reversed Austenite in Lath Martensite. 47 (2007) 1527.
DOI: 10.2355/isijinternational.47.1527
Google Scholar