[1]
Yang S, Feng X, Zhi L, Cao Q, Maier J, et al. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater., 2010, 22(7): 838-842.
DOI: 10.1002/adma.200902795
Google Scholar
[2]
Chew S Y, Ng S H, Wang J, et al. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47(13): 2976-2983.
DOI: 10.1016/j.carbon.2009.06.045
Google Scholar
[3]
Ji L, Zhang X. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology, 2009, 20(15): 155705-155714.
DOI: 10.1088/0957-4484/20/15/155705
Google Scholar
[4]
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat Mater, 2009, 8(6): 500-506.
DOI: 10.1038/nmat2460
Google Scholar
[5]
Lahiri I, Oh S W, Hwang J Y, Cho S, Sun Y K, Banerjee R, Choi W. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano, 2010, 4(6): 3440-3446.
DOI: 10.1021/nn100400r
Google Scholar
[6]
Ji L, Zhang X. Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem Commun, 2009, 11(3): 684-687.
DOI: 10.1016/j.elecom.2009.01.018
Google Scholar
[7]
Li C, Yin X, Chen L, Li Q, Wang T. Porous carbon nanofibers derived from conducting polymer: synthesis and application in lithium-ion batteries with high-rate capability. J Phys Chem C, 2009, 113(30): 13438-13442.
DOI: 10.1021/jp901968v
Google Scholar
[8]
Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J Mater Chem, 2004, 14(11): 1754-1758.
DOI: 10.1039/b316702j
Google Scholar
[9]
Tien B, Xu M, Liu J. Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery. Mater Lett, 2010, 64(13): 1465-1467.
DOI: 10.1016/j.matlet.2010.03.061
Google Scholar
[10]
Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta, 2010, 55(7): 2582-2586.
DOI: 10.1016/j.electacta.2009.12.031
Google Scholar
[11]
Mohana Reddy A L, Shaijumon MM. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett., 2009, 9(3): 1002-1006.
DOI: 10.1021/nl803081j
Google Scholar
[12]
Kavana L, Bacsa R, Tunckol M, Serp P, Zakeeruddin S M, Formal F L, Zukalova M. Multi-walled carbon nanotubes functionalized by carboxylic groups: activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li storage. J Power Sources 2010, 195(16): 5360-5369.
DOI: 10.1016/j.jpowsour.2010.03.028
Google Scholar
[13]
Kima N D, Kima W Y, Joo J B, et al. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J Power Sources, 2008, 180(1): 671-675.
DOI: 10.1016/j.jpowsour.2008.01.055
Google Scholar
[14]
Huczko A. Synthesis of aligned carbon nanotubes. Appl Phys A Mater, 2002, 74(5): 617-638.
Google Scholar
[15]
Pan Z W, Zhu H G, Zhang Z T, Im H J, Dai, S, Beach D B, Lowndes D.H. Patterned Growth of Vertically Aligned Carbon Nanotubes on Pre-patterned Iron/Silica Substrates Prepared by Sol-Gel and Shadow Masking. J Phys Chem B, 2003, 107(6): 1338-1344.
DOI: 10.1021/jp026850d
Google Scholar
[16]
Tu J P, Zhu L P, Hou K, Guo, S Y. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon, 2003, 41(6): 1257-1263.
DOI: 10.1016/s0008-6223(03)00047-2
Google Scholar
[17]
Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv Mater, 2001, 13(9): 677-681.
DOI: 10.1002/1521-4095(200105)13:9<677::aid-adma677>3.0.co;2-c
Google Scholar
[18]
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc, 2000, 122(43): 10712-10713.
DOI: 10.1021/ja002261e
Google Scholar
[19]
Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412(6843): 169-172.
DOI: 10.1038/35084046
Google Scholar
[20]
Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J Am Chem Soc, 2002, 124(7): 1156-1157.
DOI: 10.1021/ja012333h
Google Scholar
[21]
Dong Fang, Licheng Li, Weilin Xu, Hongxing Zheng, Jie Xu, Ming Jiang, Ruina Liu, Xiaosong Jiang, Zhiping Luo, Chuanxi Xiong, Qing Wang, Adv. Mater. Interfaces 2016, 3, 1500491-1500498.
DOI: 10.1002/admi.201500491
Google Scholar
[22]
Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chena L, Yang Y. Lithium storage in nitrogen-rich mesoporouscarbon materials. Energy Environ Sci, 2012, 5: 7950-7955.
DOI: 10.1039/c2ee21817h
Google Scholar
[23]
Lee B S, Son S B, Park K M, Yu W R, Oh K H, Lee S H. Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources, 2012, 199, 53-60.
DOI: 10.1016/j.jpowsour.2011.10.030
Google Scholar
[24]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. science, 2004, 306(5696): 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[25]
Wang X B, Liu Y Q, Zhu D B, Zhang L, Ma H Z, Yao N, Zhang B L, Wang X, et al. Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J Phys Chem B, 2002, 106(9): 2186-2190.
DOI: 10.1021/jp013007r
Google Scholar
[26]
Fu L, Liu Z M, Liu Y Q, Han B X, Hu P A, Cao L C, Zhu D B. Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. AdV Mater, 2005, 17(2): 217-221.
DOI: 10.1002/adma.200400833
Google Scholar
[27]
Lee S W, Yabuuchi N, Gallant B M, Chen S, Kim B S, Hammond P T, Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol, 2010, 5: 531-537.
DOI: 10.1038/nnano.2010.116
Google Scholar
[28]
Wu Z S, Ren W, Xu L, Li F, Cheng H M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5: 5463-5471.
DOI: 10.1021/nn2006249
Google Scholar
[29]
Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S, Ma W, Cui G. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 2012, 50: 1355-1362.
DOI: 10.1016/j.carbon.2011.11.007
Google Scholar
[30]
Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4: 6337-6342.
DOI: 10.1021/nn101926g
Google Scholar
[31]
Tanaka U, Sogabe T, Sakagoshi H, Ito M, Tojo T. Anode property of boron-doped graphite materials for rechargeable lithiumion batteries. Carbon 2001, 39: 931-936.
DOI: 10.1016/s0008-6223(00)00211-6
Google Scholar
[32]
Bhattacharjya D, Park H Y, Kim M S, et al. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir, 2013, 30(1): 318-324.
DOI: 10.1021/la403366e
Google Scholar
[33]
Sun Q, Zhang X Q, Han F, Li W C, Lu A H. Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries. J Mater Chem, 2012, 22(33): 17049-17054.
DOI: 10.1039/c2jm33030j
Google Scholar
[34]
Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett, 2008, 8(8): 2277-2282.
DOI: 10.1021/nl800957b
Google Scholar
[35]
Wang G, Shen X, Yao J, Park J, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-(2053).
DOI: 10.1016/j.carbon.2009.03.053
Google Scholar
[36]
Liu F, Song S Y, Xue D F, Zhang H J. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24(8): 1089-1094.
DOI: 10.1002/adma.201104691
Google Scholar
[37]
Chen X C, Wei W, Lv W, Su F Y, He Y B, Li B H. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem Commun, 2012, 48(47): 5904-5906.
DOI: 10.1039/c2cc32276e
Google Scholar
[38]
Kim H J, Wen Z H, K Yu, Mao O, Chen J H. Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode. J Mater Chem, 2012, 22(31): 15514-15518.
DOI: 10.1039/c2jm33150k
Google Scholar
[39]
He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS nano, 2013, 7(5): 4459-4469.
DOI: 10.1021/nn401059h
Google Scholar
[40]
Yang J, Zhou X Y, Li J, Zou Y L, Tang J J. Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys, 2012, 135(2): 445-450.
DOI: 10.1016/j.matchemphys.2012.05.006
Google Scholar
[41]
Han F D, Bai Y J, Liu R, Yao B, Qi Y X, Lun N. Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Adv Energy Mater, 2011, 1(5): 798-801.
DOI: 10.1002/aenm.201100340
Google Scholar
[42]
Li G D, Xu L Q, Hao Q, Wang M, Qian Y T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv, 2012, 2(1): 284-291.
DOI: 10.1039/c1ra00631b
Google Scholar
[43]
Yang S B, Feng X L, Zhi L J, Cao Q, Maier J, Mullen K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater, 2010, 22(7): 838-842.
DOI: 10.1002/adma.200902795
Google Scholar
[44]
Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F. Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon, 1999, 37: 61-69.
DOI: 10.1016/s0008-6223(98)00187-0
Google Scholar
[45]
Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337-6342.
DOI: 10.1021/nn101926g
Google Scholar
[46]
Nazri M, Yebka B, Nazri G A, Graphite-electrolyte interface in lithium-ion batteries[M]. In Lithium Batteries, Springer, Berlin, 2003. 195-219.
DOI: 10.1007/978-0-387-92675-9_6
Google Scholar
[47]
Kim M S, Bhattacharjya D, Fang B, Yang D S, Bae T S, Yu J S. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Langmuir, 2013, 29: 6754-6761.
DOI: 10.1021/la401150t
Google Scholar
[48]
Qie L, Chen W M, Wang Z H, Shao Q G, Li X, X L. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 2012, 24(15): 2047-(2050).
DOI: 10.1002/adma.201104634
Google Scholar
[49]
Li X, Zhu X, Zhu Y, Yuan Z, Si L, Qian Y. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon, 2014, 69: 515-524.
DOI: 10.1016/j.carbon.2013.12.059
Google Scholar
[50]
Bhattacharjya D, Park H Y, Kim M S, Choi H S, Inamdar S N, Yu J S. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir, 2013, 30(1): 318-324.
DOI: 10.1021/la403366e
Google Scholar
[51]
Song R, Song H, Chen X, Cui Y, Zhou J, Zhang S. Effects of copper nitrate addition on the pore property and lithium storage performance of hierarchical porous carbon nanosheets from phenolic resin. Electrochim Acta, 2014, 127: 186-192.
DOI: 10.1016/j.electacta.2014.02.021
Google Scholar
[52]
Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon, 2012, 50(3): 1355-1362.
DOI: 10.1016/j.carbon.2011.11.007
Google Scholar
[53]
Kim M S, Fang B, Kim J H, Yang D, Kim Y K, Bae T S, Yu J S. Ultra-high Li storage capacity achieved by hollow carboncapsules with hierarchical nanoarchitecture. J Mater Chem, 2011, 21: 19362-19367.
DOI: 10.1039/c1jm13753k
Google Scholar
[54]
Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J Power Sources, 2012, 197: 238-245.
DOI: 10.1016/j.jpowsour.2011.09.024
Google Scholar
[55]
Bulusheva L G, Okotrub A V, Kurenya A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013-4023.
DOI: 10.1016/j.carbon.2011.05.043
Google Scholar
[56]
Li D, Ding L X, Chen H, et al. Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2(39): 16617-16622.
DOI: 10.1039/c4ta03281k
Google Scholar