Hollow Nitrogen Rich Carbon Nanowire Array Electrode for Application in Lithium-Ion Battery

Article Preview

Abstract:

The anodic aluminum oxide template was prepared and used to fabricate polyacrylonitrile (PAN) nanowire arrays by mechanical hydraulic method, which provides a new idea for the preparation of polymer nanowires. By further carbonize the PAN nanowires at elevated temperatures, the porous nitrogen-rich carbon nanowires could be directly obtained and used as lithium-ion batteries anode material. The nitrogen-rich carbon nanowire based anode exhibited high initial capacities and maintained an outstanding reversible lithium storage capacity of 317.12 mAh g-1 after 50 cycles at a current density of 30 mA g-1, combined with an excellent rate capability of 317.17, 296.70, 265.02, 234.71, 177.02 mAh g-1 under the current density of 30, 50, 100, 200, 500 mA g-1 respectively. Further, this nitrogen-rich carbon nanowire material also has unique advantages in catalysis, supercapacitors and hydrogen storage application potential due to the porous carbon nanowire structure and the large amount of nitrogen doping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-55

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yang S, Feng X, Zhi L, Cao Q, Maier J, et al. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater., 2010, 22(7): 838-842.

DOI: 10.1002/adma.200902795

Google Scholar

[2] Chew S Y, Ng S H, Wang J, et al. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47(13): 2976-2983.

DOI: 10.1016/j.carbon.2009.06.045

Google Scholar

[3] Ji L, Zhang X. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology, 2009, 20(15): 155705-155714.

DOI: 10.1088/0957-4484/20/15/155705

Google Scholar

[4] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat Mater, 2009, 8(6): 500-506.

DOI: 10.1038/nmat2460

Google Scholar

[5] Lahiri I, Oh S W, Hwang J Y, Cho S, Sun Y K, Banerjee R, Choi W. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano, 2010, 4(6): 3440-3446.

DOI: 10.1021/nn100400r

Google Scholar

[6] Ji L, Zhang X. Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem Commun, 2009, 11(3): 684-687.

DOI: 10.1016/j.elecom.2009.01.018

Google Scholar

[7] Li C, Yin X, Chen L, Li Q, Wang T. Porous carbon nanofibers derived from conducting polymer: synthesis and application in lithium-ion batteries with high-rate capability. J Phys Chem C, 2009, 113(30): 13438-13442.

DOI: 10.1021/jp901968v

Google Scholar

[8] Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J Mater Chem, 2004, 14(11): 1754-1758.

DOI: 10.1039/b316702j

Google Scholar

[9] Tien B, Xu M, Liu J. Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery. Mater Lett, 2010, 64(13): 1465-1467.

DOI: 10.1016/j.matlet.2010.03.061

Google Scholar

[10] Du G, Zhong C, Zhang P, Guo Z, Chen Z, Liu H. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim Acta, 2010, 55(7): 2582-2586.

DOI: 10.1016/j.electacta.2009.12.031

Google Scholar

[11] Mohana Reddy A L, Shaijumon MM. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett., 2009, 9(3): 1002-1006.

DOI: 10.1021/nl803081j

Google Scholar

[12] Kavana L, Bacsa R, Tunckol M, Serp P, Zakeeruddin S M, Formal F L, Zukalova M. Multi-walled carbon nanotubes functionalized by carboxylic groups: activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li storage. J Power Sources 2010, 195(16): 5360-5369.

DOI: 10.1016/j.jpowsour.2010.03.028

Google Scholar

[13] Kima N D, Kima W Y, Joo J B, et al. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J Power Sources, 2008, 180(1): 671-675.

DOI: 10.1016/j.jpowsour.2008.01.055

Google Scholar

[14] Huczko A. Synthesis of aligned carbon nanotubes. Appl Phys A Mater, 2002, 74(5): 617-638.

Google Scholar

[15] Pan Z W, Zhu H G, Zhang Z T, Im H J, Dai, S, Beach D B, Lowndes D.H. Patterned Growth of Vertically Aligned Carbon Nanotubes on Pre-patterned Iron/Silica Substrates Prepared by Sol-Gel and Shadow Masking. J Phys Chem B, 2003, 107(6): 1338-1344.

DOI: 10.1021/jp026850d

Google Scholar

[16] Tu J P, Zhu L P, Hou K, Guo, S Y. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon, 2003, 41(6): 1257-1263.

DOI: 10.1016/s0008-6223(03)00047-2

Google Scholar

[17] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv Mater, 2001, 13(9): 677-681.

DOI: 10.1002/1521-4095(200105)13:9<677::aid-adma677>3.0.co;2-c

Google Scholar

[18] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc, 2000, 122(43): 10712-10713.

DOI: 10.1021/ja002261e

Google Scholar

[19] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412(6843): 169-172.

DOI: 10.1038/35084046

Google Scholar

[20] Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J Am Chem Soc, 2002, 124(7): 1156-1157.

DOI: 10.1021/ja012333h

Google Scholar

[21] Dong Fang, Licheng Li, Weilin Xu, Hongxing Zheng, Jie Xu, Ming Jiang, Ruina Liu, Xiaosong Jiang, Zhiping Luo, Chuanxi Xiong, Qing Wang, Adv. Mater. Interfaces 2016, 3, 1500491-1500498.

DOI: 10.1002/admi.201500491

Google Scholar

[22] Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chena L, Yang Y. Lithium storage in nitrogen-rich mesoporouscarbon materials. Energy Environ Sci, 2012, 5: 7950-7955.

DOI: 10.1039/c2ee21817h

Google Scholar

[23] Lee B S, Son S B, Park K M, Yu W R, Oh K H, Lee S H. Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources, 2012, 199, 53-60.

DOI: 10.1016/j.jpowsour.2011.10.030

Google Scholar

[24] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. science, 2004, 306(5696): 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[25] Wang X B, Liu Y Q, Zhu D B, Zhang L, Ma H Z, Yao N, Zhang B L, Wang X, et al. Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J Phys Chem B, 2002, 106(9): 2186-2190.

DOI: 10.1021/jp013007r

Google Scholar

[26] Fu L, Liu Z M, Liu Y Q, Han B X, Hu P A, Cao L C, Zhu D B. Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. AdV Mater, 2005, 17(2): 217-221.

DOI: 10.1002/adma.200400833

Google Scholar

[27] Lee S W, Yabuuchi N, Gallant B M, Chen S, Kim B S, Hammond P T, Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol, 2010, 5: 531-537.

DOI: 10.1038/nnano.2010.116

Google Scholar

[28] Wu Z S, Ren W, Xu L, Li F, Cheng H M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5: 5463-5471.

DOI: 10.1021/nn2006249

Google Scholar

[29] Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S, Ma W, Cui G. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 2012, 50: 1355-1362.

DOI: 10.1016/j.carbon.2011.11.007

Google Scholar

[30] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4: 6337-6342.

DOI: 10.1021/nn101926g

Google Scholar

[31] Tanaka U, Sogabe T, Sakagoshi H, Ito M, Tojo T. Anode property of boron-doped graphite materials for rechargeable lithiumion batteries. Carbon 2001, 39: 931-936.

DOI: 10.1016/s0008-6223(00)00211-6

Google Scholar

[32] Bhattacharjya D, Park H Y, Kim M S, et al. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir, 2013, 30(1): 318-324.

DOI: 10.1021/la403366e

Google Scholar

[33] Sun Q, Zhang X Q, Han F, Li W C, Lu A H. Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries. J Mater Chem, 2012, 22(33): 17049-17054.

DOI: 10.1039/c2jm33030j

Google Scholar

[34] Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett, 2008, 8(8): 2277-2282.

DOI: 10.1021/nl800957b

Google Scholar

[35] Wang G, Shen X, Yao J, Park J, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8): 2049-(2053).

DOI: 10.1016/j.carbon.2009.03.053

Google Scholar

[36] Liu F, Song S Y, Xue D F, Zhang H J. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24(8): 1089-1094.

DOI: 10.1002/adma.201104691

Google Scholar

[37] Chen X C, Wei W, Lv W, Su F Y, He Y B, Li B H. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem Commun, 2012, 48(47): 5904-5906.

DOI: 10.1039/c2cc32276e

Google Scholar

[38] Kim H J, Wen Z H, K Yu, Mao O, Chen J H. Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode. J Mater Chem, 2012, 22(31): 15514-15518.

DOI: 10.1039/c2jm33150k

Google Scholar

[39] He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS nano, 2013, 7(5): 4459-4469.

DOI: 10.1021/nn401059h

Google Scholar

[40] Yang J, Zhou X Y, Li J, Zou Y L, Tang J J. Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys, 2012, 135(2): 445-450.

DOI: 10.1016/j.matchemphys.2012.05.006

Google Scholar

[41] Han F D, Bai Y J, Liu R, Yao B, Qi Y X, Lun N. Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Adv Energy Mater, 2011, 1(5): 798-801.

DOI: 10.1002/aenm.201100340

Google Scholar

[42] Li G D, Xu L Q, Hao Q, Wang M, Qian Y T. Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries. RSC Adv, 2012, 2(1): 284-291.

DOI: 10.1039/c1ra00631b

Google Scholar

[43] Yang S B, Feng X L, Zhi L J, Cao Q, Maier J, Mullen K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater, 2010, 22(7): 838-842.

DOI: 10.1002/adma.200902795

Google Scholar

[44] Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F. Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon, 1999, 37: 61-69.

DOI: 10.1016/s0008-6223(98)00187-0

Google Scholar

[45] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337-6342.

DOI: 10.1021/nn101926g

Google Scholar

[46] Nazri M, Yebka B, Nazri G A, Graphite-electrolyte interface in lithium-ion batteries[M]. In Lithium Batteries, Springer, Berlin, 2003. 195-219.

DOI: 10.1007/978-0-387-92675-9_6

Google Scholar

[47] Kim M S, Bhattacharjya D, Fang B, Yang D S, Bae T S, Yu J S. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Langmuir, 2013, 29: 6754-6761.

DOI: 10.1021/la401150t

Google Scholar

[48] Qie L, Chen W M, Wang Z H, Shao Q G, Li X, X L. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 2012, 24(15): 2047-(2050).

DOI: 10.1002/adma.201104634

Google Scholar

[49] Li X, Zhu X, Zhu Y, Yuan Z, Si L, Qian Y. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon, 2014, 69: 515-524.

DOI: 10.1016/j.carbon.2013.12.059

Google Scholar

[50] Bhattacharjya D, Park H Y, Kim M S, Choi H S, Inamdar S N, Yu J S. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir, 2013, 30(1): 318-324.

DOI: 10.1021/la403366e

Google Scholar

[51] Song R, Song H, Chen X, Cui Y, Zhou J, Zhang S. Effects of copper nitrate addition on the pore property and lithium storage performance of hierarchical porous carbon nanosheets from phenolic resin. Electrochim Acta, 2014, 127: 186-192.

DOI: 10.1016/j.electacta.2014.02.021

Google Scholar

[52] Han P, Yue Y, Zhang L, Xu H, Liu Z, Zhang K, Zhang C, Dong S. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon, 2012, 50(3): 1355-1362.

DOI: 10.1016/j.carbon.2011.11.007

Google Scholar

[53] Kim M S, Fang B, Kim J H, Yang D, Kim Y K, Bae T S, Yu J S. Ultra-high Li storage capacity achieved by hollow carboncapsules with hierarchical nanoarchitecture. J Mater Chem, 2011, 21: 19362-19367.

DOI: 10.1039/c1jm13753k

Google Scholar

[54] Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J Power Sources, 2012, 197: 238-245.

DOI: 10.1016/j.jpowsour.2011.09.024

Google Scholar

[55] Bulusheva L G, Okotrub A V, Kurenya A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon, 2011, 49(12): 4013-4023.

DOI: 10.1016/j.carbon.2011.05.043

Google Scholar

[56] Li D, Ding L X, Chen H, et al. Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2(39): 16617-16622.

DOI: 10.1039/c4ta03281k

Google Scholar