Recombination of CdHgTe Quantum Dot and “Dextran - Magnetic Layered Double Hydroxide - Fluorouracil” System for Cell Imaging

Article Preview

Abstract:

In this paper, we synthesized a CdHgTe type water-soluble quantum dots, combined in the next time with the drug delivery system "dextran - magnetic layered double hydroxide - fluorouracil" (DMF), built a new nanostructures platform QD@DMF for blending the fluorescent probe function of quantum dot together with the magnetic targeting curative effect of the DMF system. The Fluorescence spectrophotometer, Ultraviolet spectrophotometer, TEM and XRD were used to characterize the luminescent properties, particle morphology and phase characteristics of the QD@DMF samples. The experiments on cell imaging were carried out by laser con-focal scan microscopy technique. Results showed that the CdHgTe QDs could be successfully grafted onto the surface of the DMF system through electrostatic coupling, forming a special structure based on magnetic layered double hydroxide with a near-infrared emission wavelength in 575~780 nm. Compared with QDs, the QD@DMF composite could significantly improve the cell imaging effect, the label intensity increased with the magnetic field intensity and obeyed the linear relationship Dmean = 1.760+0.013B. The fluorescent magnetic nanoparticles maintained not only the super-paramagnetic of DMF but also the photoluminescence properties of the QDs, implicating that the QD@DMF composite may be an effective multifunction tool for optical bio-imaging and magnetic targeted therapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-18

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol. 7 (2010) 653-664.

DOI: 10.1038/nrclinonc.2010.139

Google Scholar

[2] J. D. Heidel, M. E. Davis, Clinical Developments in Nanotechnology for Cancer Therapy, Pharm. Res. 28 (2011) 187–199.

DOI: 10.1007/s11095-010-0178-7

Google Scholar

[3] C. Zhang, X. Ji, Y. Zhang, G. Zhou, X. Ke, H. Wang, P. Tinnefeld, Z. He, One-Pot Synthesized Aptamer-Functionalized CdTe: Zn2+ Quantum Dots for Tumor-Targeted Fluorescence Imaging in Vitro and in Vivo, Anal. Chem. 85 (2013) 5843–5849.

DOI: 10.1021/ac400606e

Google Scholar

[4] R. Sinha Roy, S. Soni, R. Harfouche, P. R. Vasudevan, O. Holmes, H. de Jonge, A. Rowe, A. Paraskar, D. M. Hentschel, D. Chirgadze, T. L. Blundell, E. Gherardi, R. A. Mashelkar, S. Sengupta, Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis, Proc. Natl. Acad. Sci. U. S. A. 107 (2010).

DOI: 10.1073/pnas.1006007107

Google Scholar

[5] D. J. Bharali, S. A. Mousa, Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise, Pharmacol. Ther. 128 (2010) 324-335.

DOI: 10.1016/j.pharmthera.2010.07.007

Google Scholar

[6] I. V. Balalaeva, T. A. Zdobnova, I. V. Krutova, A. A. Brilkina, E. N. Lebedenko, S. M. Deyev, Passive and active targeting of quantum dots for whole-body fluorescence imaging of breast cancer xenografts, J. Biophotonics 5 (2012) 860-867.

DOI: 10.1002/jbio.201200080

Google Scholar

[7] L. L. Li, D. Chen, Y. Q. Zhang, Z. T. Deng, X. L. Ren, X. W. Meng, F. Q. Tang, J. Ren, L. Zhang, Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system, Nanotechnology 18 (2007) 5102 (1-6).

DOI: 10.1088/0957-4484/18/40/405102

Google Scholar

[8] Z. Wang, C. Zhou, J. Xia, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier, Colloids Surf. B. Biointerfaces 106 (2013).

DOI: 10.1016/j.colsurfb.2013.01.032

Google Scholar

[9] Y. Jia, M. Yuan, H. Yuan, X. Huang, X. Sui, X. Cui, F. Tang, J. Peng, J. Chen, S. Lu, W. Xu, L. Zhang, Q. Guo, Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery, Int. J. Nanomedicine 7 (2012).

DOI: 10.2147/ijn.s28629

Google Scholar

[10] C. Wang, H. Zhang, B. Chen, H. Yin, W. Wang, Study of the enhanced anticancer efficacy of gambogic acid on Capan-1 pancreatic cancer cells when mediated via magnetic Fe3O4 nanoparticles, Int. J. Nanomedicine 6 (2011) 1929-(1935).

DOI: 10.2147/ijn.s24707

Google Scholar

[11] X. L. Wang, L. Wei, G. H. Tao, M. Q. Huang, Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker, Chin. Chem. Lett. 22 (2011) 233-236.

DOI: 10.1016/j.cclet.2010.09.016

Google Scholar

[12] C. H. Yang, K. S. Huang, Y. S. Lin, K. Lu, C. C. Tzeng, E. C. Wang, C. H. Lin, W. Y. Hsu, J. Y. Chang, Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs, Lab. Chip. 9 (2009).

DOI: 10.1039/b814952f

Google Scholar

[13] J. M. Shen, W.J. Tang, X. L. Zhang, T. Chen, H. X. Zhang, A novel carboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell imaging, Carbohyd. Polym. 88 (2012) 239-249.

DOI: 10.1016/j.carbpol.2011.11.087

Google Scholar

[14] G. J. Gou, F. J. Bao, J. H. Yang, A synthesis method of magnetic layered composite hydroxide. National invention patent, 2009, application number: 200910117372. 1. Publication Number: CN 101607088B.

Google Scholar

[15] G. J. Gou, Z. Y. Wang, Y. H. Liu, B. Xue, J. Huang, Y. Sun, The supra-molecular assembly characterization and urgent toxic level of dextran-magnetic layered double hydroxide-fluorouracil, drug delivery system. Acta. Chim. Sin. 70 (2012) 161-169.

DOI: 10.6023/a1105183

Google Scholar

[16] G. J. Gou, Y. H. Liu, Y. Sun, J. Huang, B. Xue, L. E. Dong, Supra-molecular assembly and magnetic targeting sustained action dextran-magnetic layered double hydroxide-fluorouracil, drug delivery system. Acta Pharm. Sin. 46 (2011)1390-1398.

DOI: 10.6023/a1105183

Google Scholar

[17] G. J. Gou, F. J. Bao, Z. Y. Wang, L. Jiao, J. Huang, Y. Sun, B. Xue, L. E. Dong, Layered double hydroxide magnetic targeting slow release drug delivery system, Functional Materials Information 9 (2012) 17-26.

DOI: 10.4028/www.scientific.net/amm.320.495

Google Scholar

[18] J. Huang, G. Gou, B. Xue, Q. Yan, Y. Sun, L. E. Dong, Preparation and characterization of dextran-magnetic layered double hydroxide-fluorouracil, targeted liposomes, Int. J. Pharm. 450 (2013) 323-330.

DOI: 10.1016/j.ijpharm.2013.04.010

Google Scholar

[19] M. Feteha, S. h. Ebrahim, M. Soliman, W. Ramdan, M. Raoof, Effects of mercaptopropionic acid as a stabilizing agent and Cd: Te ion ratio on CdTe and CdHgTe quantum dots properties, J. Mater. Sci. 23 (2012) 1938-(1943).

DOI: 10.1007/s10854-012-0684-y

Google Scholar

[20] M. Q. Dai, W. Zheng, Z. W. Huang, L. Y. Lanry Yung, Aqueous phase synthesis of widely tunable photoluminescence emission CdTe/CdS core/shell quantum dots under a totally ambient atmosphere, J. Mater. Chem. 22 (2012) 16336-16345.

DOI: 10.1039/c2jm31476b

Google Scholar

[21] X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16 (2005) 63-72.

DOI: 10.1016/j.copbio.2004.11.003

Google Scholar