[1]
X. Cao: Yunnan Journal of Traditional Chinese Medicine and Materia , (2006) No. 12, P44-46. In Chinese.
Google Scholar
[2]
J.J. Wang, X.C. Chen and D. Xing: Progress in Biochemistry and Biophysics, Vol. 30(2003) No. 6 P980-984.
Google Scholar
[3]
Li PC, Harrison DJ. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem, Vol. 69 (1997) No. 8 P1564-1568.
DOI: 10.1021/ac9606564
Google Scholar
[4]
Walker GM, Zeringue HC, Beebe DJ. Microenvironment design considerations for cellular scale studie. Lab Chip, Vol. 4 (2004) No. 2 P91-97.
DOI: 10.1039/b311214d
Google Scholar
[5]
B.C. Lin: Journal of China Pharmaceutical University, Vol. 34 (2003) No. 1 P1-6.
Google Scholar
[6]
Z.L. Fang and Q. Fang: Modern Scientific Instruments, (2001) No. 4 P3-6.
Google Scholar
[7]
T. Deng Z.Q. Ning and Y.Q. Zhou: Chinese Journal of New Drugs, Vol. 11 (2002) No, 1 P23-31.
Google Scholar
[8]
G.H. Du,Y.H. Wang and R. Zhang: Modernization of Traditional Chinese Medicine and Materia Medica-WORLD SCIENCE AND TECHNOLOGY, Vol. 11 (2009) No. 4 P480-484.
Google Scholar
[9]
S.J. Li and G,H. Du: Chinese Pharmaceutical Journal, Vol. 43(2008) No. 2 P84-87.
Google Scholar
[10]
B. Chen and X, M, Zhou: Journal of Modern Clinical Medical Bioengineering, Vol. 14(2008) No. 6 P470-473.
Google Scholar
[11]
B.C. Lin and J.H. Zhou: Chinese Journal of Chromatography, Vol. 27(2005) No. 5 P655-661.
Google Scholar
[12]
L. Pang, L.D. Ma and X.S. Meng: Chinese Journal of Modern Applied Pharmacy, Vol. 32 (2015) No. 12 P1518-1525.
Google Scholar
[13]
X.J. Yang, X, Li and Y.L. Tong: Chinese Journal of Cell Biology, Vol. 30 (2008) No. 1 P721-726.
Google Scholar
[14]
Kim D, Lokuta MA, Huttenlocher A, et al. Selective and tunable gradient device for cell culture and chemotaxis study. Lab Chip, Vol. 9 (2009) No. 12 P1797-1800.
DOI: 10.1039/b901613a
Google Scholar
[15]
S.Y. Lu,S.X. Jiang and J.H. Jiang: Journal of Biomedical Engineering, (2008) No. 3 P675-679.
Google Scholar
[16]
Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip, Vol. 8 (2008) No. 1 P34.
DOI: 10.1039/b711887b
Google Scholar
[17]
L.L. Cheng D.D. Yu and X.Q. Deng: Journal of Wuhan Institute of Technology, Vol. 31 (2009) No. 1 P58-61.
Google Scholar
[18]
Yang L, Li L, Tu Q, et al. Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal. Chem, Vol. 82 (2010) No. 15 P6430-9.
DOI: 10.1021/ac100544x
Google Scholar
[19]
Gomezsjoberg R, Leyrat AA, Houseman BT, et al. Biocompatibility and Reduced Drug Absorption of Sol-Gel-Treated PDMS for Microfluidic Cell Culture Applications. Anal. Chem, Vol. 82 (2010) No. 21 P8954-8960.
DOI: 10.1021/ac101870s
Google Scholar
[20]
Y. Zhang,D. Gao and Q.Q. Liang: Analytical Chemistry, Vol. 44(2016) No. 12.
Google Scholar
[21]
Y.Z. Lu,Y.N. Ren and M.H. Gong: Chinese Pharmaceutical Journal, Vol. 50(2015) No. 24 P2124-2129.
Google Scholar
[22]
Martinez AW, Phillips ST, Whitesides GM. From the Cover: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A., Vol. 105 (2008) No. 50 P1960-(1966).
DOI: 10.1073/pnas.0810903105
Google Scholar
[23]
Martinez AW, Phillips ST, Butte MJ, et al. Patterned Paper as a Platform for Inexpensive, Low Volume, Portable Bioassays[J]. Angew Chem Int Ed Engl, Vol. 46 (2007) No. 8 P1318-1320.
DOI: 10.1002/anie.200603817
Google Scholar
[24]
Martinez AW, Phillips ST, Whitesides GM, et al. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem, Vol. 82 (2010) No. 1 P3-10.
DOI: 10.1021/ac9013989
Google Scholar
[25]
Ellerbee AK, Phillips ST, Siegel AC, et al. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal. Chem, Vol. 81 (2009) No. 20 P8447-8452.
DOI: 10.1021/ac901307q
Google Scholar
[26]
Carrilho E, Phillips ST, Vella SJ, et al. Paper microzone plates. Anal. Chem, Vol. 81 (2009) No. 15 P5990-5998.
DOI: 10.1021/ac900847g
Google Scholar
[27]
Zhao W, Van d BA. Lab on paper. Lab Chip, Vol. 8(2008) No. 12 P1988-(1991).
Google Scholar
[28]
Fenton EM, Mascarenas MR, López GP, et al. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. Mater. interfaces, Vol. 1 (2009) No. 1 P124.
DOI: 10.1021/am800043z
Google Scholar
[29]
Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip, Vol. 7 (2007) No. 12 P1696-1704.
DOI: 10.1039/b711513j
Google Scholar
[30]
Ma B, Zhang G, Qin J, et al. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip, Vol. 9 (2009) No. 2 P232.
DOI: 10.1039/b809117j
Google Scholar
[31]
L.H. Wang D.Y. Liu and B. Wang: Analytical Chemistry, Vol. 36(2008) No. 2 P143-149.
Google Scholar
[32]
Zhao C, Wu Z, Xue G, et al. Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis. J. Chromatogr. A, Vol. 1218 (2011) No. 23 P3669-3674.
DOI: 10.1016/j.chroma.2011.04.020
Google Scholar
[33]
Gao D, Li H, Wang N, et al. Evaluation of the Absorption of Methotrexate on Cells and Its Cytotoxicity Assay by Using an Integrated Microfluidic Device Coupled to a Mass Spectrometer. Anal. Chem, Vol. 84 (2016) No. 21 P9230-9237.
DOI: 10.1021/ac301966c
Google Scholar
[34]
X.L. Liao,B. Liu and W.F. Xu: China. CN 102876570 A, 2013-01-16.
Google Scholar
[35]
Chen L, Lee S, Choo J, et al. Continuous dynamic flow micropumps for microfluid manipulation. J Micromech Microeng, Vol. 18 (2007) No. 1 P013001.
DOI: 10.1088/0960-1317/18/1/013001
Google Scholar
[36]
Y.H. Zheng J.Z. Wu and J.B. Shao: Chinese Journal of Biotechnology, Vol. 25 (2009) No. 5 P779 -785.
Google Scholar
[37]
Forry SP, Locascio LE. On-chip CO2 control for microfluidic cell culture. Lab Chip, Vol. 11 (2011) No. 23 P40-41.
DOI: 10.1039/c1lc20505f
Google Scholar
[38]
C.B. Yang,Q. Chen and J.B. Shao: Letters in Biotechnology, Vol. 19 (2008) No. 1 P76-79.
Google Scholar
[39]
Wielhouwer EM, Ali S, Alafandi A, et al. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip, Vol. 11 (2011) No. 10 P1815-1824.
Google Scholar
[40]
F.C. Yin,H. Wen and G.L. Zhu: Chinese Journal of Chromatography, Vol. 34 (2016) No. 11 P1031-1042.
Google Scholar
[41]
C. Liu S.C. Yang and M. Li: Journal of Instrumental Analysis, Vol. 34 (2015) No. 11 P1324-1330.
Google Scholar
[42]
G.L. Zhang and J. Li: Journal of Yangtze University(Natural Science Edition), (2014) No. 34 P52-55.
Google Scholar
[43]
Y.B. Li,B.B. Zhang and Q.D. He: Journal of Instrumental Analysis, c.
Google Scholar
[44]
Yang F, Chen ZG, Pan JB, et al. An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics. Biomicrofluidics, Vol. 5 (2011) No. 2 P35.
DOI: 10.1063/1.3605509
Google Scholar
[45]
W.X. Wang: Microfluidic chip breast cancer tissue microarray for high throughput antitumor drug testing(Ph. D, Guangzhou Medical University, China, 2005).
Google Scholar
[46]
Sugiura S, Edahiro J, Kikuchi K, et al. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol. Bioeng., Vol. 100 (2008) No. 6 P1156-1165.
DOI: 10.1002/bit.21836
Google Scholar
[47]
Kwon CH, Wheeldon I, Kachouie NN, et al. Drug-eluting microarrays for cell-based screening of chemical-induced apoptosis. Anal. Chem, Vol. 83 (2011) No. 11 P4118-4125.
DOI: 10.1021/ac200267t
Google Scholar
[48]
Ye N, Qin J, Shi W, et al. Cell-based high content screening using an integrated microfluidic device. Lab Chip, Vol. 7 (2007) No. 12 P1696-1704.
DOI: 10.1039/b711513j
Google Scholar
[49]
L. Pang Y.R. Bao and X.S. Meng: Central South Pharmacy, (2015) No. 3.
Google Scholar
[50]
Yoshimitsu R, Hattori K, Sugiura S, et al. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol. Bioeng., Vol. 111 (2014) No. 5 P937.
DOI: 10.1002/bit.25150
Google Scholar
[51]
Q.C. Zhuang R.Z. Ning and Y. Ma: Analytical Chemistry, Vol. 44 (2016) No. 4 P522-532.
Google Scholar
[52]
Truong K, Ikura M. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol, Vol. 11 (2001) No. 5 P573-578.
DOI: 10.1016/s0959-440x(00)00249-9
Google Scholar
[53]
F. Zheng, W.Y. Liu and Z. Wu: SCIENCE CHINA Chemistry, (2010) No. 6 P599-610.
Google Scholar
[54]
F. Zhang and C. He: Biology, Vol. 20 (2008) No. 1 P46-52.
Google Scholar
[55]
Ting AY, Kain KH, Klemke RL, et al. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl. Acad. Sci. U. S. A., Vol. 98 (2001) No. 26 P15003 - 15008.
DOI: 10.1073/pnas.211564598
Google Scholar
[56]
J.J. Wang X.C. Chen and D. Yin: Acta Biophysica Sinica, Vol. 20 (2004) No. 2 P109-113.
Google Scholar
[57]
J. Bai: Fluorescence analysis of protein kinase activity with high sensitivity(Ph. D, Hebei University, 2014).
Google Scholar
[58]
Duan X, Liu L, Feng X, et al. Assemblies of conjugated polyelectrolytes with proteins for controlled protein photoinactivation. Adv. Mater, Vol. 22 (2010) No. 14 P1602-1606.
DOI: 10.1002/adma.200903716
Google Scholar
[59]
W.S. Jian L.P. Han and Z.G. Chen: Chemical Research and Application, (2014) No. 12 P1825-1830.
Google Scholar
[60]
D.H. Chen: A novel apoptosis inducer drug screening system based on FRET and flow cytometry(Ph. D, Nanjing University, 2014).
Google Scholar
[61]
X.L. Ye,W.B. Du and S.Q. Gu: Analytical Chemistry, Vol36 (2008) No. 10 P1443-1446.
Google Scholar
[62]
P. Jiang,F. Qu and X. Tan: Progress in Chemistry, (2009) No. 9 P1895-(1904).
Google Scholar
[63]
B. Liu,S. Shao and F. Xie: Beijing Biomedical Engineering, (2015) No. 2 P196-202.
Google Scholar
[64]
Z.H. Xu,R. Guo and F.L. Yang: Annual meeting of Chinese Applied Chemistry (China, 2011).
Google Scholar
[65]
L.Q. Xu,Y.J. Bai and W. Sun: National Conference on Chemical Biology(China, 2011).
Google Scholar
[66]
Geiger A, Russo L, Gensch T, et al. Correlating Calcium Binding, Förster Resonance Energy Transfer, and Conformational Change in the Biosensor TN-XXL. Biophys. J, Vol. 102 (2012) No. 10 P2401-24410.
DOI: 10.1016/j.bpj.2012.03.065
Google Scholar
[67]
Ohtsuka K, Sato S, Sato Y, et al. Fluorescence imaging of potassium ions in living cells using a fluorescent probe based on a thrombin binding aptamer-peptide conjugate. Chem. Commun., Vol. 48 (2012) No. 39 P4740-4742.
DOI: 10.1039/c2cc30536d
Google Scholar
[68]
H.J. Wang W.Z. Zhang and C. He: Chinese Journal of Luminescence, Vol. 33 (2012) No. 9 P1030-1036.
Google Scholar
[69]
Y. Wang,Y. Li and B. Xu: Scientia Sinica Chimica, (2011) No. 10 P1629-1635.
Google Scholar
[70]
Y.Q. Wang, J, Tang and Q. Liu: Beijing Biomedical Engineering, (2016) No. 6 P566-570.
Google Scholar