Effects of Zr Contents on the Microstructure, Mechanical Properties and Biocompatibility of Ta-Zr Alloys

Article Preview

Abstract:

Ta-xZr (x = 90, 80, 70, 60 at.%) alloys with good mechanical properties and high density were prepared by powder metallurgy method and vacuum sintering technology. The surface morphologies and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS). The results showed that lamellar Ta was observed with no second phase during the sintering process. The tensile strength and the Young's modulus increased with the Ta contents firstly and then decreased, and varied with the Ta contents in the range of 60.5 ± 5.03~163.0 ± 10.11 MPa and 4.5 ± 0.47~11.8 ± 1.16 GPa, respectively. In conclusion, The Ta-70Zr alloy is potentially useful in the hard tissue implants for its mechanical properties and biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-44

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.X. Lin, S. Ozan, K. Munir, and K. Wang: RSC Advances, Vol. 7 (2017), p.12309.

Google Scholar

[2] K. Rezwan, Q.Z. Chen, and J.J. Blake: Biomaterials, Vol. 27 (2006) No. 18, p.3413.

Google Scholar

[3] M. Geetha, A.K. Singh, R. Asokanmani, GOGIA A K: Progress in Materials Science, Vol. 54 (2009) No. 3, p.397.

Google Scholar

[4] M.A. Hussein, C. Suryanarayana, N. Al-Aqeeli: Materials and Design, Vol. 87 (2015), p.693.

Google Scholar

[5] X.M. Ma, W. Sun and Y.J. Yang: The Chinese Journal of Nonferrous Metals, Vol. 20 (2010) No. 6, p.1195. (In Chinese).

Google Scholar

[6] N Sankaguchi, M Niinomi, and T Akahori: Materials Science and Engineering C, Vol. 25 (2005), p.363.

Google Scholar

[7] Q.X. Wu: Titanium Industry Progress, Vol. 01 (2012), p.46. (In Chinese).

Google Scholar

[8] M. Todai, T. Nagase, and T. Hori: Scripta Materialia, Vol. 129 (2017) , p.65.

Google Scholar

[9] J. Liu, L. Chang, H.R. Liu, Y.S. Li, H.L. Yang and J.M. Ruan: Materials Science and Engineering C, Vol 71 (2017), p.512.

Google Scholar

[10] Information on http: /www. crct. polymtl. ca/fact/phase_diagram. php?xlabel=&ylabel=&maxx=&minx=&maxy=&miny=&calc=1&file=Ta-Zr. jpg&y=&cat=&dir=FSstel&lang=&type=&coords=.

Google Scholar

[11] Q. Li, M. Niinomi, J. Hieda: Acta Biomaterialia, Vol. 9(2013), p.8027.

Google Scholar

[12] F.Y. Liu: Biocompatibility of Zr based bulk amorphous alloy(MS., Harbin Institute of Technology, China 2013), p.68. (In Chinese).

Google Scholar

[13] M. Gajendiran, J. Choi, S.J. Kim, K. Kim, H. Shin, H.J. Koo and K. Kim: Journal of Industrial and Engineering Chemistry, Vol 51(2017), p.12.

Google Scholar

[14] Y.K. Zhao, Y. Yao, and W.X. LIU: Journal of Materials Science & Technology, Vol. 02 (2006), p.205. (In Chinese).

Google Scholar

[15] X.M. Yu, L.L. Tan, H.Z. Yang and K. Yang: Journal of Alloys and Compounds, Vol 644(2015), p.698.

Google Scholar

[16] A. Biesiekierski, D.H. Ping, Y.C. Li, J.X. Lin, K.K. Munir, Y.M. Yoko and C. Wen: Acta Biomaterialia, Vol 53(2017), p.549.

Google Scholar

[17] W.J. Jin: Shape memory effect and mechanical properties of biomedical Ti-Ta based alloys(Ph.D., Xiamen University, China 2009), p.84. (In Chinese).

Google Scholar

[18] I.H. Oh, N. Nomura, and N. Masahashi: Scripta Materialia, Vol. 49 (2003) No. 12, p.1197.

Google Scholar

[19] H. Skliarova, O. Azzolini, R.R. Johnson, and V. Palmieri: Journal of Alloys and Compounds, Vol. 639 (2015), p.488.

Google Scholar

[20] K. Rezwan, Q.Z. Chen, and J.J. Blake: Biomaterials, Vol. 27 (2006) No. 18, p.3413.

Google Scholar

[21] M. Geetha, A.K. Singh, R. Asokanmani, GOGIA A K: Progress in Materials Science, Vol. 54 (2009) No. 3, p.397.

Google Scholar

[22] A. Moroni, V.L. Caja, and E. L: Biomaterials, Vol. 15 (1994), p.926.

Google Scholar

[23] G. Sberveglieri, E. Comini, and G. Faglia: Sensors and Actuators B, Vol. 66 (2000), p.139.

Google Scholar

[24] Z.P. Xi, H.P. Tang, and J.Y. Wang: Rare Metal Materials and Engineering, Vol. 36 (2007) No. 3, p.555. (In Chinese).

Google Scholar

[25] T.A. Yakupov, Z.N. Utegulov, T. Demirkan and T. Karabacak: Materials Today Proceedings, Vol. 4 (2017) No. 3, p.4469.

Google Scholar

[26] C.L. Li, Y.Z. Zhan and W. P Jiang: Materials & Design, Vol. 32 (2011) No. 8, p.4598.

Google Scholar

[27] J. Wei, Y.B. Li: European Polymer Journal, Vol. 40 (2003) No. 8, p.509.

Google Scholar