Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)

Article Preview

Abstract:

In this work, graphene oxide (GO) is synthesized via chemical method (improved method) and reduced graphene oxide (rGO) using thermal treatment. The GO and rGO thin films were coated on a glass substrate by using drop casting method. The GO and rGO thin film were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) to make sure the morphological and optical characteristics of the thin film. In addition, the electrical studies were performed by current-voltage (I-V) characteristic. The rGO thin film displays higher conductivity in comparison with GO which is 4.12 x 10-5 S/cm, and also affected the morphological (SEM) and optical properties (FTIR). Morphological and optical data confirms that rGO losses the oxygen groups compare to GO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-116

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. F. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, Electric Field Effect in Atomically Thin Carbon Films,, Electr. F. Eff. At. thin carbon Film., vol. 306, no. 5969, p.666–669, (2013).

DOI: 10.1126/science.1102896

Google Scholar

[2] S. Rani, M. Kumar, S. Sharma, and D. Kumar, Effect of Reduced Graphene Oxide and Annealing Temperature on the Photocatalytic Properties of Titanium Oxide,, vol. 3, no. 4, p.267–278, (2015).

Google Scholar

[3] Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,, Appl. Phys. Lett., vol. 94, no. 02192, p.1–3, (2009).

DOI: 10.1063/1.3068498

Google Scholar

[4] G. Venugopal, K. Krishnamoorthy, R. Mohan, and S. Kim, An investigation of the electrical transport properties of graphene-oxide thin films,, Mater. Chem. Phys., vol. 132, no. 1, p.29–33, (2012).

DOI: 10.1016/j.matchemphys.2011.10.040

Google Scholar

[5] V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,, Opt. Mater. (Amst)., vol. 66, p.460–468, (2017).

DOI: 10.1016/j.optmat.2017.01.042

Google Scholar

[6] A. Shalaby, D. Nihtianova, P. Markov, A. D. Staneva, R. S. Iordanova, and Y. B. Dimitriev, Structural analysis of reduced graphene oxide by transmission electron microscopy,, Bulg. Chem. Commun., vol. 47, no. 1, p.291–295, (2015).

Google Scholar

[7] M. D. Stoller, S. Park, Z. Yanwu, J. An, and R. S. Ruoff, Graphene-Based ultracapacitors,, Nano Lett., vol. 8, no. 10, p.3498–3502, (2008).

DOI: 10.1021/nl802558y

Google Scholar

[8] L. Y. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature,, Chem. Commun., vol. 8, no. 10, p.3498–3502, (2014).

DOI: 10.1039/c3cc47224h

Google Scholar

[9] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications,, Adv. Mater., vol. 22, no. 35, p.3906–3924, (2010).

DOI: 10.1002/adma.201001068

Google Scholar

[10] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors,, Nano Lett., vol. 8, no. 10, p.3137–3140, (2008).

DOI: 10.1021/nl8013007

Google Scholar

[11] L. Cardenas, J. MacLeod, J. Lipton-Duffin, D. G. Seifu, F. Popescu, M. Siaj, D. Mantovani, and F. Rosei, Reduced graphene oxide growth on 316L stainless steel for medical applications,, Nanoscale, vol. 6, no. 15, p.8664–70, (2014).

DOI: 10.1039/c4nr02512a

Google Scholar

[12] D. Kim, S. J. Yang, Y. S. Kim, H. Jung, and C. R. Park, Simple and cost-effective reduction of graphite oxide by sulfuric acid,, Carbon N. Y., vol. 50, no. 9, p.3229–3232, (2012).

DOI: 10.1016/j.carbon.2011.11.014

Google Scholar

[13] J. He and L. Fang, Controllable synthesis of reduced graphene oxide,, Curr. Appl. Phys., vol. 16, no. 9, p.1152–1158, (2016).

Google Scholar

[14] N. Cao and Y. Zhang, Study of Reduced Graphene Oxide Preparation by Hummers ' Method and Related Characterization,, J. Nanomater., vol. 2015, p.1–5, (2014).

Google Scholar

[15] K. H. Lee, B. Lee, S. J. Hwang, J. U. Lee, H. Cheong, O. S. Kwon, K. Shin, and N. H. Hur, Large scale production of highly conductive reduced graphene oxide sheets by a solvent-free low temperature reduction,, Carbon N. Y., vol. 69, p.327–335, (2014).

DOI: 10.1016/j.carbon.2013.12.031

Google Scholar

[16] L. Shahriary and A. a. Athawale, Graphene Oxide Synthesized by using Modified Hummers Approach,, Int. J. Renew. Energy Environ. Eng., vol. 02, no. 01, p.58–63, (2014).

Google Scholar

[17] T. Zhang and D. Zhang, 2011_Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication_Zhang, Zhang(2).pdf,, vol. 34, no. 1, p.25–28, (2011).

DOI: 10.1007/s12034-011-0048-x

Google Scholar

[18] H. F. Shi, C. Wang, Z. P. Sun, Y. L. Zhou, K. J. Jin, and G. Z. Yang, Transparent conductive reduced graphene oxide thin films produced by spray coating,, Sci. China-Physics Mech. Astron., vol. 58, no. 1, p.5, (2015).

DOI: 10.1007/s11433-014-5614-y

Google Scholar

[19] Q. Zheng and J.-K. Kim, Graphene for Transparent Conductors, vol. 53, no. 9. (2013).

Google Scholar