Synthesis of Filamentous Carbon Material via Decomposition of CF2Cl2 over Self-Organizing Ni-Cr Catalyst

Article Preview

Abstract:

The way to produce the nanostructured carbon filaments via H2-assisted catalytic decomposition of CF2Cl2 over self-organizing Ni-based catalyst has been reported. The self-organizing 6%Ni/CNM catalyst, where CNM is a carbon nanomaterial, resulted from carbon erosion of bulk Ni-Cr alloy (nichrome) in C2H4Cl2 vapors was also shown to be effective for catalytic chemical vapor deposition of CF2Cl2 with formation of bimodal carbon structures. It was demonstrated that interaction of nichrome with CF2Cl2/H2 reaction mixture at 600 °C leads to its rapid disintegration caused by carbon erosion to form disperse active Ni-particles catalyzing the growth of carbon filaments. The resulted filamentous carbon material is characterized with high textural parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-126

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Allin, J.C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P.J. Fraser, R.L. Langenfelds and W.T. Sturges: Atmos. Chem. Phys. Vol. 15 (2015), p.6867.

DOI: 10.5194/acp-15-6867-2015

Google Scholar

[2] M.J. Molina and F.S. Rowland: Nature Vol. 249 (1974), p.810.

Google Scholar

[3] E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo and K.J. Klabunde: Micropor. Mesopor. Mater. V. 175 (2013), p.76.

Google Scholar

[4] J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellуn and A. Jimenez-Lopez: J. Hazard. Mater. Vol. 260 (2013), p.167.

Google Scholar

[5] E.V. Golubina, E.S. Lokteva, V.V. Lunin, N.S. Telegina, A. Yu. Stakheev and P. Tundo: Appl. Catal. A: Gen. Vol. 302 (2006), p.32.

DOI: 10.1016/j.apcata.2005.12.020

Google Scholar

[6] A. Nieto-Marques, J.L. Valverde and M.A. Keane: Appl. Catal. A: Gen. Vol. 332 (2007), p.237.

Google Scholar

[7] H. Vogg and L. Stieglitz: Chemosphere Vol. 15 (1986), p.1373.

Google Scholar

[8] R.A. Buyanov and V.V. Chesnokov: Catalysis in Industry No. 2 (2006), p.3.

Google Scholar

[9] R.A. Buyanov, I.V. Mishakov and A.A. Vedyagin: Solid Fuel Chem. Vol. 3 (2014), p.60.

Google Scholar

[10] I.V. Mishakov, V.V. Chesnokov, R.A. Buyanov and A.L. Chuvilin: Reac. Kin. Catal. Lett. Vol. 76 (2002), p.361.

Google Scholar

[11] H.J. Grabke: Mater. Corros. Vol. 54 (2003), p.736.

Google Scholar

[12] Yu.I. Bauman, I.V. Mishakov, R.A. Buyanov, A.A. Vedyagin, A.M. Volodin: Kinetics and Catalysis Vol. 52 (2011), p.547.

DOI: 10.1134/s002315841104001x

Google Scholar

[13] L. Camilli, M. Scarselli, S. Del Gobbo, P. Castrucci, F. Nanni, E. Gautron, S. Lefrant, M. De Crescenzi: Carbon Vol. 49 (2011), p.3307.

DOI: 10.1016/j.carbon.2011.04.014

Google Scholar

[14] N. Hordy, N. -Y. Mendoza-Gonzalez, S. Coulombe and J. -L. Meunier: Carbon Vol. 63 (2013), p.348.

Google Scholar

[15] Yu.I. Bauman, I.V. Mishakov, A.A. Vedyagin, S.V. Dmitriev, M.S. Mel'gunov and R.A. Buyanov: Catalysis in Industry No. 2 (2012), p.261.

Google Scholar

[16] I.V. Mishakov, Yu.I. Bauman, D.V. Korneev and A.A. Vedyagin: Top. Catal. Vol. 56 (2013), p.1026.

Google Scholar

[17] Yu.I. Bauman, I.V. Mishakov, A.A. Vedyagin and S. Ramakrishna: Mater Lett. V. 201 (2017). p.70.

Google Scholar

[18] Yu.I. Bauman, I.V. Mishakov, A.A. Vedyagin, A.V. Rudnev, P.E. Plyusnin, Yu.V. Shubin and R.A. Buyanov: Top. Catal. V. 60 (2017), p.171.

DOI: 10.1007/s11244-016-0729-1

Google Scholar

[19] R. Ouyang, J. -X. Liu and W. -X. Li: JACS. Vol. 135 (2013), p.1760.

Google Scholar