Connecting the Microstructure Stability of Ni Based Superalloys to their Chemical Compositions

Article Preview

Abstract:

The degradation of creep resistance in Nickel-based single crystal superalloys is essentially ascribed to their microstructure evolution. Yet there is a lack of work that manages to simulate the effect of alloying element concentrations on microstructure degradation. In this research, a computational model is developed to connect the rafting kinetics of Ni superalloys with their chemical composition, by combining thermodynamics calculation and an energy-based microstructure model. The isotropic coarsening rate and γ/γ misfit stresses have been selected as composition related parameter, and the effect of service temperature, time and applied stress are also taken into consideration to simulate the evolutions of microstructure parameters during creep process. The different generations of commercial Ni superalloys are selected and their chemical compositions are calculated based on this model. The simulated microstructure parameters are validated by the results from experimental results and the existing analytical model. The capability of the model in predicting the microstructure characteristics may provide instructional thought in developing a novel computational guided design approach in Ni superalloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

967-975

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press2008.

Google Scholar

[2] Z. Zhu, H. Basoalto, N. Warnken, R. Reed, A model for the creep deformation behaviour of nickel-based single crystal superalloys, Acta Mater 60(12) (2012) 4888-4900.

DOI: 10.1016/j.actamat.2012.05.023

Google Scholar

[3] B. Dyson, Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application, Mater Sci Technol-lond 25(2) (2009) 213-220.

DOI: 10.1179/174328408x369348

Google Scholar

[4] F. Nabarro, C.M. Cress, P. Kotschy, The thermodynamic driving force for rafting in superalloys, Acta Mater 44(8) (1996) 3189-3198.

DOI: 10.1016/1359-6454(95)00423-8

Google Scholar

[5] T. Ohashi, K. Hidaka, S. Imano, Elastic stress in single crystal Ni-base superalloys and the driving force for their microstructural evolution under high temperature creep conditions, Acta Mater 45(5) (1997) 1801-1810.

DOI: 10.1016/s1359-6454(96)00324-2

Google Scholar

[6] B. Fedelich, A. Epishin, T. Link, H. Klingelhöffer, G. Künecke, P.D. Portella, Rafting during high temperature deformation in a single crystal superalloy: experiments and modeling, Superalloys 2012, TMS, 2012, pp.491-500.

DOI: 10.1002/9781118516430.ch54

Google Scholar

[7] R. Rettig, N.C. Ritter, H.E. Helmer, S. Neumeier, R.F. Singer, Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation, Model Simul Mater Sc 23(3) (2015) 035004.

DOI: 10.1088/0965-0393/23/3/035004

Google Scholar

[8] R. Reed, T. Tao, N. Warnken, Alloys-by-design: application to nickel-based single crystal superalloys, Acta Mater 57(19) (2009) 5898-5913.

DOI: 10.1016/j.actamat.2009.08.018

Google Scholar

[9] B. Fedelich, G. Künecke, A. Epishin, T. Link, P. Portella, Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys, Mater Sci Eng A 510-511 (2009) 273-277.

DOI: 10.1016/j.msea.2008.04.089

Google Scholar

[10] Y.-N. Fan, H.-J. Shi, W.-H. Qiu, Constitutive modeling of creep behavior in single crystal superalloys: Effects of rafting at high temperatures, Mater Sci Eng A 644 (2015) 225-233.

DOI: 10.1016/j.msea.2015.07.058

Google Scholar

[11] D. Dye, J. Coakley, V. Vorontsov, H. Stone, R. Rogge, Elastic moduli and load partitioning in a single-crystal nickel superalloy, Scripta Mater 61(2) (2009) 109-112.

DOI: 10.1016/j.scriptamat.2009.03.008

Google Scholar

[12] A. Sato, H. Harada, A.-C. Yeh, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa, J. Zhang, A 5th generation SC superalloy with balanced high temperature properties and processability, Superalloys (2008) 131-138.

DOI: 10.7449/2008/superalloys_2008_131_138

Google Scholar

[13] Y. Koizumi, T. Kobayashi, T. Yokokawa, J. Zhang, M. Osawa, H. Harada, Y. Aoki, M. Arai, Development of next-generation Ni-base single crystal superalloys, Superalloys 2004 (2004) 35-43.

DOI: 10.7449/2004/superalloys_2004_35_43

Google Scholar

[14] S. Tian, Y. Su, B. Qian, X. Yu, F. Liang, A. Li, Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re, Mater Design 37 (2012) 236-242.

DOI: 10.1016/j.matdes.2012.01.008

Google Scholar

[15] J. Gong, D. Snyder, T. Kozmel, C. Kern, J.E. Saal, I. Berglund, J. Sebastian, G. Olson, ICME Design of a Castable, Creep-Resistant, Single-Crystal Turbine Alloy, JOM (2017) 1-6.

DOI: 10.1007/s11837-017-2300-3

Google Scholar

[16] J. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138, Scripta Mater 48(3) (2003) 287-293.

DOI: 10.1016/s1359-6462(02)00379-2

Google Scholar

[17] A.-C. Yeh, A. Sato, T. Kobayashi, H. Harada, On the creep and phase stability of advanced Ni-base single crystal superalloys, Mater Sci Eng A 490(1-2) (2008) 445-451.

DOI: 10.1016/j.msea.2008.02.008

Google Scholar

[18] A. Epishin, T. Link, H. Klingelhöffer, B. Fedelich, U. Brückner, P.D. Portella, New technique for characterization of microstructural degradation under creep: Application to the nickel-base superalloy CMSX-4, Mater Sci Eng A 510 (2009) 262-265.

DOI: 10.1016/j.msea.2008.04.135

Google Scholar