Mechanical and Microstructural Characterization of Powder Medium Entropy Alloy

Article Preview

Abstract:

High and medium entropy alloys are an intriguing new material class, revered for possessing an exceptional combination of primarily mechanical properties. In this scientific contribution, the CoCrNi medium entropy alloy has been produced by a combination of mechanical alloying (MA) and spark plasma sintering (SPS). The properties have been characterized by means of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and tensile testing. The powder after the MA process exhibited nano-grained microstructures with fine chemical homogeneity. After the SPS densification, a full density of the bulk products has been achieved. The microstructure was composed of major FCC phase and minor secondary precipitates. The materials possessed high strength values coupled by reasonable ductility levels, therefore overall satisfactory results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

976-981

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218. doi:http://dx.doi.org/10.1016/j.msea.2003.10.257.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, J.A. Hawk, Thermodynamics of concentrated solid solution alloys, Curr. Opin. Solid State Mater. Sci. 21 (2017) 238–251. doi:https://doi.org/10.1016/j.cossms.2017.08.001.

DOI: 10.1016/j.cossms.2017.08.001

Google Scholar

[4] O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun. 6 (2015) 6529. http://dx.doi.org/10.1038/ncomms7529.

DOI: 10.1038/ncomms7529

Google Scholar

[5] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. doi:http://dx.doi.org/10.1016/j.actamat.2014.08.026.

DOI: 10.1016/j.actamat.2014.08.026

Google Scholar

[6] I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, I. Dlouhy, Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering, Mater. Des. 119 (2017).

DOI: 10.1016/j.matdes.2017.01.036

Google Scholar

[7] O.N. Senkov, J.M. Scott, S. V Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074.

DOI: 10.1007/s10853-012-6260-2

Google Scholar

[8] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, H.-C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear. 261 (2006) 513–519. doi:http://dx.doi.org/10.1016/j.wear.2005.12.008.

DOI: 10.1016/j.wear.2005.12.008

Google Scholar

[9] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics. 39 (2013) 74–78. doi:http://dx.doi.org/10.1016/j.intermet.2013.03.018.

DOI: 10.1016/j.intermet.2013.03.018

Google Scholar

[10] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater. 138 (2017) 72–82. doi:http://dx.doi.org/10.1016/j.actamat.2017.07.029.

DOI: 10.1016/j.actamat.2017.07.029

Google Scholar

[11] Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat. Commun. 8 (2017) 14390.

DOI: 10.1038/ncomms14390

Google Scholar

[12] J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Mater. 132 (2017) 35–48. doi:https://doi.org/10.1016/j.actamat.2017.04.033.

DOI: 10.1016/j.actamat.2017.04.033

Google Scholar

[13] I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy, Mater. Sci. Eng. A. 701 (2017).

DOI: 10.1016/j.msea.2017.06.086

Google Scholar

[14] T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, K. Kakehi, H. Murakami, J.-W. Yeh, S.-R. Jian, The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy, Sci. Rep. 7 (2017) 12658.

DOI: 10.1038/s41598-017-13026-7

Google Scholar

[15] P. Hanusova, I. Dlouhy, Reactions in Ternary System Al-B2O3-C during Mechanical Alloying, Mater. Sci. Forum. 891 (2017) 522–525.

DOI: 10.4028/www.scientific.net/msf.891.522

Google Scholar