[1]
Plastics Market Analysis By Product (PE, PP, PVC, PET, Polystyrene, Engineering Thermoplastics), By Application (Film & Sheet, Injection Molding, Textiles, Packaging, Transportation, Construction) And Segment Forecasts To 2020, Report ID: 978-1-68038-232-7, Grand View Research, San Francisco, United States, (2015).
Google Scholar
[2]
Information on https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950.
Google Scholar
[3]
C.A. May, Introduction to epoxy resins, in: Epoxy Resins, Chemistry and Technology, 2nd ed. C.AMay (Ed.), Marcel Dekker Inc., New York, (1988).
DOI: 10.1002/pol.1988.140261212
Google Scholar
[4]
H. Lee, K. Newill, Handbook of Epoxy Resins, McGraw-Hill, New York, (1982).
Google Scholar
[5]
Market Report: Global Epoxy Resin Market, 3rd Edition Publisher, Acmite Market Intelligence, Germany, (2017).
Google Scholar
[6]
C.J. Hilado, Flammability Handbook for Plastics, 5th edition, Technomic Publishing Co., Lancaster, Pennsylvania, (1998).
Google Scholar
[7]
J. Troitzsch, Plastics Flammability Handbook, Hanser Publishers, Munich, (2004).
Google Scholar
[8]
N. Kavak, Investigation of effect to mechanical strength of additive powder type into adhesive, Int. J. Adv. Mater. Manuf. Charact. 3 (2013) 53–55.
Google Scholar
[9]
Y.-X. Fu, Z.-X. He, D.-C. Mo, S.-S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014) 493–498.
DOI: 10.1016/j.applthermaleng.2014.02.044
Google Scholar
[10]
Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conf. Ser.: Mater. Sci. Eng. 110(1) (2016) 012072.
DOI: 10.1088/1757-899x/110/1/012072
Google Scholar
[11]
P. Gonon, A. Boudefel, Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys., 99 (2006) 024308.
DOI: 10.1063/1.2163978
Google Scholar
[12]
G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles, Compos. Part A: Appl. Sci. Manuf., 33 (2002) 375–384.
DOI: 10.1016/s1359-835x(01)00117-8
Google Scholar
[13]
Y.-S. Lin, S.-S. Chiu, Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles, J. Adhes. Sci. Technol. 22(14) (2008) 1673–1697.
DOI: 10.1163/156856108x320537
Google Scholar
[14]
S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique, ACS Appl. Mater. Interfaces 7(10) (2015 5674–5684.
DOI: 10.1021/am506765p
Google Scholar
[15]
L.-N. Ho, H. Nishikawa, N. Natsume, T. Takemoto, K. Miyake, M. Fujita, K. Ota, Effects of trace elements in copper fillers on the electrical properties of conductive adhesives, J. Electron. Mater. 39(1) (2010) 115–123.
DOI: 10.1007/s11664-009-0946-5
Google Scholar
[16]
Y.-S. Lin, S.-S. Chiu, Electrical properties of conductive adhesives as affected by particle compositions, particle shapes, and oxidizing temperatures of copper powders in a polymer matrix, J. Appl. Polym. Sci. 93(5) (2004) 2045–(2053).
DOI: 10.1002/app.20670
Google Scholar
[17]
A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, E.V. Nikolaev, S.P. Zhuravkov, V.A. Vlasov, Physics of magnetic phenomena: Investigation of the composition and electromagnetic properties of lithium ferrite life5o8 ceramics synthesized from ultradisperse iron oxide. Russ. Phys. J+ 57(10) (2015) 1342–1347.
DOI: 10.1007/s11182-015-0387-y
Google Scholar
[18]
A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions, Fire Mater. 37 (2013) 259–279.
DOI: 10.1002/fam.2128
Google Scholar
[19]
A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials, Prog. Polym. Sci. 38 (2013) 1357–1387.
DOI: 10.1016/j.progpolymsci.2013.06.006
Google Scholar
[20]
O.B. Nazarenko, Y.A. Amelkovich, A.P. Ilyin, A.I. Sechin, Prospects of using nanopowders as flame retardant additives, Adv. Mat. Res. 872 (2014) 123–127.
DOI: 10.4028/www.scientific.net/amr.872.123
Google Scholar
[21]
S. Farhadi, K. Pourzare, S. Sadeghinejad, Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO3)2 complex at low temperature, J. Nanostruct. Chem. 3 (2013) 16.
DOI: 10.1186/2193-8865-3-16
Google Scholar
[22]
W.V. Vicki, Tunku Atiqah, Thermal properties of nano-copper oxide reinforced epoxy composites, Int. Res. J. Technol. 3(3) (2016) 51–55.
Google Scholar
[23]
Z.N. Azwa, B.F. Yousif, Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation, Polym. Degrad. Stabil. 98 (2013) 2752–2759.
DOI: 10.1016/j.polymdegradstab.2013.10.008
Google Scholar
[24]
X. Shuangning, L. Zhihe, L. Baoming, Y. Weiming, B. Xueyuan, Devolatilization characteristics of biomass at flash reating rate, Fuel 85 (2006) 664–670.
DOI: 10.1016/j.fuel.2005.08.044
Google Scholar
[25]
M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decompositon of ammonium perchlorate, J. Nanostruct. Chem. 3 (2013) 45.
DOI: 10.1186/2193-8865-3-47
Google Scholar
[26]
T.A. Nguyen, T.H. Nguyen, T.V. Nguyen, H. Thai1, X. Shi, Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings, J. Nanosci. Nanotechnol. 15 (2016) 1–8.
DOI: 10.1166/jnn.2016.12162
Google Scholar
[27]
F.-L. Jin, S.-J. Park. Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stabil. 97 (2012) 2148–2153.
DOI: 10.1016/j.polymdegradstab.2012.08.015
Google Scholar
[28]
K. Pielichowski, A. Leszczynska, J. Njuguna, Mechanism of thermal stability enhancement in polymer nanocomposites, in: V. Mittal (Ed.), Optimization of Polymer Nanocomposite Properties, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2010, p.195–210.
DOI: 10.1002/9783527629275.ch9
Google Scholar
[29]
F. Yang, G.L. Nelson, Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites, Polym. Degrad. Stab. 96(3) (2011) 270–276.
DOI: 10.1016/j.polymdegradstab.2010.06.003
Google Scholar
[30]
Y. Arao, Flame retardancy of polymer nanocomposite, in: P.M. Visakh and Y. Arao (Eds.), Flame Retardants: Polymer Blends, Composites and Nanocomposites, Springer International Publishing, 2015, p.15–44.
DOI: 10.1007/978-3-319-03467-6
Google Scholar
[31]
A. Gromov, O. Nazarenko, A. Il'in, Y. Pautova, D. Tikhonov, Electroexplosive nanometals, in: A. Gromov and U. Teipel (Eds.), Metal Nanopowders: Production, Characterization and Energetic Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p.67–78.
DOI: 10.1002/9783527680696.ch3
Google Scholar
[32]
Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57–67.
DOI: 10.1016/s0169-4332(03)00059-x
Google Scholar
[33]
M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, S.G. Psakhie, Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen, Powder Technol. 295 (2016) 307–314.
DOI: 10.1016/j.powtec.2016.04.005
Google Scholar
[34]
A.V. Pervikov, M. Lerner, K. Krukovskii, Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains, Curr. Appl. Phys. 17(2) (2017) 201–206.
DOI: 10.1016/j.cap.2016.11.026
Google Scholar
[35]
O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, Characterization of aluminum nanopowders after long-term storage, Appl. Surf. Sci. 321 (2014) 475–480.
DOI: 10.1016/j.apsusc.2014.10.034
Google Scholar
[36]
O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, P.M. Visakh, Characterization of copper nanopowders after natural aging, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012072.
DOI: 10.1088/1757-899x/81/1/012072
Google Scholar
[37]
K.K. Shen, S.H. Kochesfahani, F. Jouffret, Boron based flame retardants and flame retardancy, in: C.A. Wilkie, A.B. Morgan (Eds.), Fire Retardancy of Polymeric Materials, 2nd ed, CRC Press, Baco Raton, 2009, p.207–237.
DOI: 10.1201/9781420084009-c9
Google Scholar
[38]
P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098–1101.
DOI: 10.1002/pat.3776
Google Scholar
[39]
P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Thermal properties of epoxy composites filled with boric acid, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012095.
DOI: 10.1088/1757-899x/81/1/012095
Google Scholar
[40]
S.A.G. Hong, T.C. Wang, Effect of copper oxides on the thermal oxidative degradation of the epoxy resin, J. Appl. Polym. Sci. 52 (1994) 1339–1352.
DOI: 10.1002/app.1994.070520918
Google Scholar
[41]
G.H. Shinn, S.Y. Chin, Catalytic effects of copper oxides on the curing and degradation reactions of cyanate ester resin, J. Appl. Polym. Sci. 104(1) (2007) 442–448.
DOI: 10.1002/app.25547
Google Scholar
[42]
Yu. Tonozuka, I. Shohji, S. Koyama, H. Hokazono, Degradation behaviors of adhesion strength between epoxy resin and copper under aging at high temperature, Procedia Engineering 184 (2017) 648–654.
DOI: 10.1016/j.proeng.2017.04.132
Google Scholar
[43]
S.G.Y. Hong, S. Ching, The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg, Polym. Degrad. Stab. 83(3) (2004) 529–537.
DOI: 10.1016/j.polymdegradstab.2003.09.008
Google Scholar
[44]
S. Balci, N.A. Sezgi, E. Eren, Boron oxide production kinetics using boric acid as raw material, Ind. Eng. Chem. Res. 51 (2012) 11091–11096.
DOI: 10.1021/ie300685x
Google Scholar