Thermooxidative Degradation of Composites Based on Epoxy Resin and Metal Nanopowders

Abstract:

Article Preview

The thermooxidative degradation behavior of the epoxy composites filled with metal nanopowders has been investigated by thermogravimetric analysis under nonisothermal conditions in air atmosphere. The mechanical characteristics of epoxy composites were also studied by three-point bending method. The comparison of two different types of metal nanopowder was made. Aluminum and copper nanopowders prepared by electrical explosion of wires were used as fillers separately as well as in combination with conventional fame-retardant boric acid. It was shown that aluminum nanopowder increased slightly thermal stability of the epoxy composites. On the contrary, the introduction of copper nanopowder in epoxy resin led to rapid degradation of the epoxy composite. The combination of metal nanopowders and boric acid improved thermal stability of the epoxy composites. The highest flexural properties showed the epoxy composite filled with copper nanopowder.

Info:

Periodical:

Edited by:

Dr. Anatoliy Surzhikov

Pages:

11-20

Citation:

D. Lipchansky and O. B. Nazarenko, "Thermooxidative Degradation of Composites Based on Epoxy Resin and Metal Nanopowders", Materials Science Forum, Vol. 942, pp. 11-20, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] Plastics Market Analysis By Product (PE, PP, PVC, PET, Polystyrene, Engineering Thermoplastics), By Application (Film & Sheet, Injection Molding, Textiles, Packaging, Transportation, Construction) And Segment Forecasts To 2020, Report ID: 978-1-68038-232-7, Grand View Research, San Francisco, United States, (2015).

[2] Information on https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950.

[3] C.A. May, Introduction to epoxy resins, in: Epoxy Resins, Chemistry and Technology, 2nd ed. C.AMay (Ed.), Marcel Dekker Inc., New York, (1988).

[4] H. Lee, K. Newill, Handbook of Epoxy Resins, McGraw-Hill, New York, (1982).

[5] Market Report: Global Epoxy Resin Market, 3rd Edition Publisher, Acmite Market Intelligence, Germany, (2017).

[6] C.J. Hilado, Flammability Handbook for Plastics, 5th edition, Technomic Publishing Co., Lancaster, Pennsylvania, (1998).

[7] J. Troitzsch, Plastics Flammability Handbook, Hanser Publishers, Munich, (2004).

[8] N. Kavak, Investigation of effect to mechanical strength of additive powder type into adhesive, Int. J. Adv. Mater. Manuf. Charact. 3 (2013) 53–55.

[9] Y.-X. Fu, Z.-X. He, D.-C. Mo, S.-S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014) 493–498.

DOI: https://doi.org/10.1016/j.applthermaleng.2014.02.044

[10] Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conf. Ser.: Mater. Sci. Eng. 110(1) (2016) 012072.

DOI: https://doi.org/10.1088/1757-899x/110/1/012072

[11] P. Gonon, A. Boudefel, Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys., 99 (2006) 024308.

DOI: https://doi.org/10.1063/1.2163978

[12] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles, Compos. Part A: Appl. Sci. Manuf., 33 (2002) 375–384.

DOI: https://doi.org/10.1016/s1359-835x(01)00117-8

[13] Y.-S. Lin, S.-S. Chiu, Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles, J. Adhes. Sci. Technol. 22(14) (2008) 1673–1697.

DOI: https://doi.org/10.1163/ej.9789004165922.i-426.177

[14] S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique, ACS Appl. Mater. Interfaces 7(10) (2015 5674–5684.

DOI: https://doi.org/10.1021/am506765p

[15] L.-N. Ho, H. Nishikawa, N. Natsume, T. Takemoto, K. Miyake, M. Fujita, K. Ota, Effects of trace elements in copper fillers on the electrical properties of conductive adhesives, J. Electron. Mater. 39(1) (2010) 115–123.

DOI: https://doi.org/10.1007/s11664-009-0946-5

[16] Y.-S. Lin, S.-S. Chiu, Electrical properties of conductive adhesives as affected by particle compositions, particle shapes, and oxidizing temperatures of copper powders in a polymer matrix, J. Appl. Polym. Sci. 93(5) (2004) 2045–(2053).

DOI: https://doi.org/10.1002/app.20670

[17] A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, E.V. Nikolaev, S.P. Zhuravkov, V.A. Vlasov, Physics of magnetic phenomena: Investigation of the composition and electromagnetic properties of lithium ferrite life5o8 ceramics synthesized from ultradisperse iron oxide. Russ. Phys. J+ 57(10) (2015) 1342–1347.

DOI: https://doi.org/10.1007/s11182-015-0387-y

[18] A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions, Fire Mater. 37 (2013) 259–279.

DOI: https://doi.org/10.1002/fam.2128

[19] A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials, Prog. Polym. Sci. 38 (2013) 1357–1387.

DOI: https://doi.org/10.1016/j.progpolymsci.2013.06.006

[20] O.B. Nazarenko, Y.A. Amelkovich, A.P. Ilyin, A.I. Sechin, Prospects of using nanopowders as flame retardant additives, Adv. Mat. Res. 872 (2014) 123–127.

DOI: https://doi.org/10.4028/www.scientific.net/amr.872.123

[21] S. Farhadi, K. Pourzare, S. Sadeghinejad, Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO3)2 complex at low temperature, J. Nanostruct. Chem. 3 (2013) 16.

DOI: https://doi.org/10.1186/2193-8865-3-16

[22] W.V. Vicki, Tunku Atiqah, Thermal properties of nano-copper oxide reinforced epoxy composites, Int. Res. J. Technol. 3(3) (2016) 51–55.

[23] Z.N. Azwa, B.F. Yousif, Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation, Polym. Degrad. Stabil. 98 (2013) 2752–2759.

DOI: https://doi.org/10.1016/j.polymdegradstab.2013.10.008

[24] X. Shuangning, L. Zhihe, L. Baoming, Y. Weiming, B. Xueyuan, Devolatilization characteristics of biomass at flash reating rate, Fuel 85 (2006) 664–670.

DOI: https://doi.org/10.1016/j.fuel.2005.08.044

[25] M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decompositon of ammonium perchlorate, J. Nanostruct. Chem. 3 (2013) 45.

DOI: https://doi.org/10.1186/2193-8865-3-47

[26] T.A. Nguyen, T.H. Nguyen, T.V. Nguyen, H. Thai1, X. Shi, Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings, J. Nanosci. Nanotechnol. 15 (2016) 1–8.

[27] F.-L. Jin, S.-J. Park. Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stabil. 97 (2012) 2148–2153.

[28] K. Pielichowski, A. Leszczynska, J. Njuguna, Mechanism of thermal stability enhancement in polymer nanocomposites, in: V. Mittal (Ed.), Optimization of Polymer Nanocomposite Properties, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2010, p.195–210.

DOI: https://doi.org/10.1002/9783527629275.ch9

[29] F. Yang, G.L. Nelson, Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites, Polym. Degrad. Stab. 96(3) (2011) 270–276.

[30] Y. Arao, Flame retardancy of polymer nanocomposite, in: P.M. Visakh and Y. Arao (Eds.), Flame Retardants: Polymer Blends, Composites and Nanocomposites, Springer International Publishing, 2015, p.15–44.

DOI: https://doi.org/10.1007/978-3-319-03467-6_2

[31] A. Gromov, O. Nazarenko, A. Il'in, Y. Pautova, D. Tikhonov, Electroexplosive nanometals, in: A. Gromov and U. Teipel (Eds.), Metal Nanopowders: Production, Characterization and Energetic Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p.67–78.

DOI: https://doi.org/10.1002/9783527680696.ch3

[32] Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57–67.

DOI: https://doi.org/10.1016/s0169-4332(03)00059-x

[33] M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, S.G. Psakhie, Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen, Powder Technol. 295 (2016) 307–314.

DOI: https://doi.org/10.1016/j.powtec.2016.04.005

[34] A.V. Pervikov, M. Lerner, K. Krukovskii, Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains, Curr. Appl. Phys. 17(2) (2017) 201–206.

DOI: https://doi.org/10.1016/j.cap.2016.11.026

[35] O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, Characterization of aluminum nanopowders after long-term storage, Appl. Surf. Sci. 321 (2014) 475–480.

DOI: https://doi.org/10.1016/j.apsusc.2014.10.034

[36] O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, P.M. Visakh, Characterization of copper nanopowders after natural aging, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012072.

DOI: https://doi.org/10.1088/1757-899x/81/1/012072

[37] K.K. Shen, S.H. Kochesfahani, F. Jouffret, Boron based flame retardants and flame retardancy, in: C.A. Wilkie, A.B. Morgan (Eds.), Fire Retardancy of Polymeric Materials, 2nd ed, CRC Press, Baco Raton, 2009, p.207–237.

DOI: https://doi.org/10.1201/9781420084009-c9

[38] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098–1101.

DOI: https://doi.org/10.1002/pat.3776

[39] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Thermal properties of epoxy composites filled with boric acid, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012095.

DOI: https://doi.org/10.1088/1757-899x/81/1/012095

[40] S.A.G. Hong, T.C. Wang, Effect of copper oxides on the thermal oxidative degradation of the epoxy resin, J. Appl. Polym. Sci. 52 (1994) 1339–1352.

DOI: https://doi.org/10.1002/app.1994.070520918

[41] G.H. Shinn, S.Y. Chin, Catalytic effects of copper oxides on the curing and degradation reactions of cyanate ester resin, J. Appl. Polym. Sci. 104(1) (2007) 442–448.

DOI: https://doi.org/10.1002/app.25547

[42] Yu. Tonozuka, I. Shohji, S. Koyama, H. Hokazono, Degradation behaviors of adhesion strength between epoxy resin and copper under aging at high temperature, Procedia Engineering 184 (2017) 648–654.

DOI: https://doi.org/10.1016/j.proeng.2017.04.132

[43] S.G.Y. Hong, S. Ching, The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg, Polym. Degrad. Stab. 83(3) (2004) 529–537.

DOI: https://doi.org/10.1016/j.polymdegradstab.2003.09.008

[44] S. Balci, N.A. Sezgi, E. Eren, Boron oxide production kinetics using boric acid as raw material, Ind. Eng. Chem. Res. 51 (2012) 11091–11096.

DOI: https://doi.org/10.1021/ie300685x