Thermooxidative Degradation of Composites Based on Epoxy Resin and Metal Nanopowders

Article Preview

Abstract:

The thermooxidative degradation behavior of the epoxy composites filled with metal nanopowders has been investigated by thermogravimetric analysis under nonisothermal conditions in air atmosphere. The mechanical characteristics of epoxy composites were also studied by three-point bending method. The comparison of two different types of metal nanopowder was made. Aluminum and copper nanopowders prepared by electrical explosion of wires were used as fillers separately as well as in combination with conventional fame-retardant boric acid. It was shown that aluminum nanopowder increased slightly thermal stability of the epoxy composites. On the contrary, the introduction of copper nanopowder in epoxy resin led to rapid degradation of the epoxy composite. The combination of metal nanopowders and boric acid improved thermal stability of the epoxy composites. The highest flexural properties showed the epoxy composite filled with copper nanopowder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Plastics Market Analysis By Product (PE, PP, PVC, PET, Polystyrene, Engineering Thermoplastics), By Application (Film & Sheet, Injection Molding, Textiles, Packaging, Transportation, Construction) And Segment Forecasts To 2020, Report ID: 978-1-68038-232-7, Grand View Research, San Francisco, United States, (2015).

Google Scholar

[2] Information on https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950.

Google Scholar

[3] C.A. May, Introduction to epoxy resins, in: Epoxy Resins, Chemistry and Technology, 2nd ed. C.AMay (Ed.), Marcel Dekker Inc., New York, (1988).

DOI: 10.1002/pol.1988.140261212

Google Scholar

[4] H. Lee, K. Newill, Handbook of Epoxy Resins, McGraw-Hill, New York, (1982).

Google Scholar

[5] Market Report: Global Epoxy Resin Market, 3rd Edition Publisher, Acmite Market Intelligence, Germany, (2017).

Google Scholar

[6] C.J. Hilado, Flammability Handbook for Plastics, 5th edition, Technomic Publishing Co., Lancaster, Pennsylvania, (1998).

Google Scholar

[7] J. Troitzsch, Plastics Flammability Handbook, Hanser Publishers, Munich, (2004).

Google Scholar

[8] N. Kavak, Investigation of effect to mechanical strength of additive powder type into adhesive, Int. J. Adv. Mater. Manuf. Charact. 3 (2013) 53–55.

Google Scholar

[9] Y.-X. Fu, Z.-X. He, D.-C. Mo, S.-S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014) 493–498.

DOI: 10.1016/j.applthermaleng.2014.02.044

Google Scholar

[10] Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conf. Ser.: Mater. Sci. Eng. 110(1) (2016) 012072.

DOI: 10.1088/1757-899x/110/1/012072

Google Scholar

[11] P. Gonon, A. Boudefel, Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys., 99 (2006) 024308.

DOI: 10.1063/1.2163978

Google Scholar

[12] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles, Compos. Part A: Appl. Sci. Manuf., 33 (2002) 375–384.

DOI: 10.1016/s1359-835x(01)00117-8

Google Scholar

[13] Y.-S. Lin, S.-S. Chiu, Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles, J. Adhes. Sci. Technol. 22(14) (2008) 1673–1697.

DOI: 10.1163/156856108x320537

Google Scholar

[14] S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique, ACS Appl. Mater. Interfaces 7(10) (2015 5674–5684.

DOI: 10.1021/am506765p

Google Scholar

[15] L.-N. Ho, H. Nishikawa, N. Natsume, T. Takemoto, K. Miyake, M. Fujita, K. Ota, Effects of trace elements in copper fillers on the electrical properties of conductive adhesives, J. Electron. Mater. 39(1) (2010) 115–123.

DOI: 10.1007/s11664-009-0946-5

Google Scholar

[16] Y.-S. Lin, S.-S. Chiu, Electrical properties of conductive adhesives as affected by particle compositions, particle shapes, and oxidizing temperatures of copper powders in a polymer matrix, J. Appl. Polym. Sci. 93(5) (2004) 2045–(2053).

DOI: 10.1002/app.20670

Google Scholar

[17] A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, E.V. Nikolaev, S.P. Zhuravkov, V.A. Vlasov, Physics of magnetic phenomena: Investigation of the composition and electromagnetic properties of lithium ferrite life5o8 ceramics synthesized from ultradisperse iron oxide. Russ. Phys. J+ 57(10) (2015) 1342–1347.

DOI: 10.1007/s11182-015-0387-y

Google Scholar

[18] A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions, Fire Mater. 37 (2013) 259–279.

DOI: 10.1002/fam.2128

Google Scholar

[19] A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials, Prog. Polym. Sci. 38 (2013) 1357–1387.

DOI: 10.1016/j.progpolymsci.2013.06.006

Google Scholar

[20] O.B. Nazarenko, Y.A. Amelkovich, A.P. Ilyin, A.I. Sechin, Prospects of using nanopowders as flame retardant additives, Adv. Mat. Res. 872 (2014) 123–127.

DOI: 10.4028/www.scientific.net/amr.872.123

Google Scholar

[21] S. Farhadi, K. Pourzare, S. Sadeghinejad, Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO3)2 complex at low temperature, J. Nanostruct. Chem. 3 (2013) 16.

DOI: 10.1186/2193-8865-3-16

Google Scholar

[22] W.V. Vicki, Tunku Atiqah, Thermal properties of nano-copper oxide reinforced epoxy composites, Int. Res. J. Technol. 3(3) (2016) 51–55.

Google Scholar

[23] Z.N. Azwa, B.F. Yousif, Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation, Polym. Degrad. Stabil. 98 (2013) 2752–2759.

DOI: 10.1016/j.polymdegradstab.2013.10.008

Google Scholar

[24] X. Shuangning, L. Zhihe, L. Baoming, Y. Weiming, B. Xueyuan, Devolatilization characteristics of biomass at flash reating rate, Fuel 85 (2006) 664–670.

DOI: 10.1016/j.fuel.2005.08.044

Google Scholar

[25] M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decompositon of ammonium perchlorate, J. Nanostruct. Chem. 3 (2013) 45.

DOI: 10.1186/2193-8865-3-47

Google Scholar

[26] T.A. Nguyen, T.H. Nguyen, T.V. Nguyen, H. Thai1, X. Shi, Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings, J. Nanosci. Nanotechnol. 15 (2016) 1–8.

DOI: 10.1166/jnn.2016.12162

Google Scholar

[27] F.-L. Jin, S.-J. Park. Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stabil. 97 (2012) 2148–2153.

DOI: 10.1016/j.polymdegradstab.2012.08.015

Google Scholar

[28] K. Pielichowski, A. Leszczynska, J. Njuguna, Mechanism of thermal stability enhancement in polymer nanocomposites, in: V. Mittal (Ed.), Optimization of Polymer Nanocomposite Properties, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2010, p.195–210.

DOI: 10.1002/9783527629275.ch9

Google Scholar

[29] F. Yang, G.L. Nelson, Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites, Polym. Degrad. Stab. 96(3) (2011) 270–276.

DOI: 10.1016/j.polymdegradstab.2010.06.003

Google Scholar

[30] Y. Arao, Flame retardancy of polymer nanocomposite, in: P.M. Visakh and Y. Arao (Eds.), Flame Retardants: Polymer Blends, Composites and Nanocomposites, Springer International Publishing, 2015, p.15–44.

DOI: 10.1007/978-3-319-03467-6

Google Scholar

[31] A. Gromov, O. Nazarenko, A. Il'in, Y. Pautova, D. Tikhonov, Electroexplosive nanometals, in: A. Gromov and U. Teipel (Eds.), Metal Nanopowders: Production, Characterization and Energetic Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p.67–78.

DOI: 10.1002/9783527680696.ch3

Google Scholar

[32] Y.S. Kwon, A.A. Gromov, A.P. Ilyin, G.H. Rim, Passivation process for superfine aluminum powders obtained by electrical explosion of wires, Appl. Surf. Sci. 211(1–4) (2003) 57–67.

DOI: 10.1016/s0169-4332(03)00059-x

Google Scholar

[33] M.I. Lerner, E.A. Glazkova, A.S. Lozhkomoev, N.V. Svarovskaya, O.V. Bakina, A.V. Pervikov, S.G. Psakhie, Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen, Powder Technol. 295 (2016) 307–314.

DOI: 10.1016/j.powtec.2016.04.005

Google Scholar

[34] A.V. Pervikov, M. Lerner, K. Krukovskii, Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains, Curr. Appl. Phys. 17(2) (2017) 201–206.

DOI: 10.1016/j.cap.2016.11.026

Google Scholar

[35] O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, Characterization of aluminum nanopowders after long-term storage, Appl. Surf. Sci. 321 (2014) 475–480.

DOI: 10.1016/j.apsusc.2014.10.034

Google Scholar

[36] O.B. Nazarenko, Y.A. Amelkovich, A.I. Sechin, P.M. Visakh, Characterization of copper nanopowders after natural aging, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012072.

DOI: 10.1088/1757-899x/81/1/012072

Google Scholar

[37] K.K. Shen, S.H. Kochesfahani, F. Jouffret, Boron based flame retardants and flame retardancy, in: C.A. Wilkie, A.B. Morgan (Eds.), Fire Retardancy of Polymeric Materials, 2nd ed, CRC Press, Baco Raton, 2009, p.207–237.

DOI: 10.1201/9781420084009-c9

Google Scholar

[38] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098–1101.

DOI: 10.1002/pat.3776

Google Scholar

[39] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Thermal properties of epoxy composites filled with boric acid, IOP Conf. Ser. Mater. Sci. Eng. 81 (2015) 012095.

DOI: 10.1088/1757-899x/81/1/012095

Google Scholar

[40] S.A.G. Hong, T.C. Wang, Effect of copper oxides on the thermal oxidative degradation of the epoxy resin, J. Appl. Polym. Sci. 52 (1994) 1339–1352.

DOI: 10.1002/app.1994.070520918

Google Scholar

[41] G.H. Shinn, S.Y. Chin, Catalytic effects of copper oxides on the curing and degradation reactions of cyanate ester resin, J. Appl. Polym. Sci. 104(1) (2007) 442–448.

DOI: 10.1002/app.25547

Google Scholar

[42] Yu. Tonozuka, I. Shohji, S. Koyama, H. Hokazono, Degradation behaviors of adhesion strength between epoxy resin and copper under aging at high temperature, Procedia Engineering 184 (2017) 648–654.

DOI: 10.1016/j.proeng.2017.04.132

Google Scholar

[43] S.G.Y. Hong, S. Ching, The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg, Polym. Degrad. Stab. 83(3) (2004) 529–537.

DOI: 10.1016/j.polymdegradstab.2003.09.008

Google Scholar

[44] S. Balci, N.A. Sezgi, E. Eren, Boron oxide production kinetics using boric acid as raw material, Ind. Eng. Chem. Res. 51 (2012) 11091–11096.

DOI: 10.1021/ie300685x

Google Scholar