[1]
S.V. Rudnev, Application of elliptic Riemannian geometry to problems of crystallography, Comput. Math. Applic. 6(5-8) (1988) 597–616.
DOI: 10.1016/b978-0-08-037014-9.50031-5
Google Scholar
[2]
N. M. p Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Defects in single-crystal silicon induced by hydrogenation, Phys Rev. B35(8) (1987) 4166.
DOI: 10.1103/physrevb.35.4166
Google Scholar
[3]
S.N. Sutulin, V.I. Vereshchagin, S.V. Rudnev, IR spectroscopy studies of OH-groups in H:LiNbO3, News AS USSR, Ser. Inorganic material 25(10) (1990) 1923-1925.
Google Scholar
[4]
S. Furukawa, T. Miyasato Three-dimensional quantum well effects in ultrafiae silicon particles, Jap. J. Appl. Phys. 27(11) (1988) L2207–L2209.
DOI: 10.1143/jjap.27.l2207
Google Scholar
[5]
A.A. Berezin, Isotopic superlattices and isotopicaliy ordered structures, Solid State Соmmun. 54(8) (1988) 819–82I.
Google Scholar
[6]
Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conference Series: Materials Science and Engineering 110(1) (2016) 012072.
DOI: 10.1088/1757-899x/110/1/012072
Google Scholar
[7]
I.L Fourguet, M.F. Rcriou, R. De Papeet, La reaction d'ecn- ange topotactique LiNbO3 - HNbO3 on milieu scide, Revue de Chimie minerale, 21(2) (1984) 385–590.
Google Scholar
[8]
I.L. Fourguuet et al., HHbO3: Structure and NMR study, Solid State Ionika, North-Holland Publishing Company 9(10) (1983) 1011–1044.
Google Scholar
[9]
Yong Yan, Dusn Fang, Ju Lin Peng, L. A. Nursill, Electron micioscopic and diffraction study of proton-exchanged LiNbO3, Ferroelectrics 77(1) (I988) 91–100.
Google Scholar
[10]
V.I. Vereshchagin, M.A. Sergeev, B.S. Semukhin, Y.V. Borodin, Boron Nitride With Packets of Nanotubes for Microcomposite Ceramics, Refractories and Industrial Ceramics 41(11-12) (2000) 440–443.
DOI: 10.1023/a:1011322504412
Google Scholar
[11]
Y. V. Borodin A. N. Sergeev, The formation of nanocomposition structure in crystals,2008 Proceedings of the 3rd International Forum on Strategic Technology, IFOST 2008 (2008) 174-176.
DOI: 10.1109/ifost.2008.4603001
Google Scholar
[12]
H. Tsu, E.H. Nicollian, A. Reisman, Passivation delects in poiyciyetalline superlattices and quantum well structures, Appl. Phys. Lett. 55(18) (I989) 1897–1899.
DOI: 10.1063/1.102328
Google Scholar
[13]
Y.V. Borodin, Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions, Technical Physics 60(1) (2015) 107-111.
DOI: 10.1134/s1063784215010065
Google Scholar
[14]
Y. Borodin, Effect of protonation on the formation of nanocomposition structure in crystals, Proceedings of the 6th International Forum on Strategic Technology, IFOST 1 (2011) 218–221.
DOI: 10.1109/ifost.2011.6021007
Google Scholar
[15]
W.E. Lee, N.A. Sanford, A.H. Heuer, Direct observation of structural phase changes in proton-exchanged LiNbO3 waveguides using hansmission electron microscopy, Appl. Phys. 59(8) (1986) 2629–2633.
DOI: 10.1063/1.336965
Google Scholar
[16]
L.M. Walpita, Optical waveguide dispersion in quantium well structures, J. Appl. Phys. 24 Pt. 2(6) (1986) 472–474.
Google Scholar
[17]
H. Zhou, H. Shen, F. Yuan et al., Study of anomalies near 75o С in LiNbO3 by X-ray diffraction // Clin. Phys.Lett. 3(8) (1986) 373–376.
Google Scholar
[18]
I. Hartwig, Y. Lerche, Anisotropic deformation of a crystal plate and its analysis with X-ray diffraction methods, Phys. Status solidi 109(1) (1983) 79–91.
DOI: 10.1002/pssa.2211090107
Google Scholar
[19]
C.E. Rice, I.L. Jackel, Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.
DOI: 10.1016/0025-5408(84)90126-0
Google Scholar
[20]
С.E. Rice, The structure and properties of Li1-xHxNbO3, J. Solid State Chem. 64(2) (1986) 188–199.
DOI: 10.1016/0022-4596(86)90138-6
Google Scholar
[21]
N. Kumada, S. Muramau, P. Muto et al., Topochemical reactions of LixNbO3, J. Solid State Chem. 73(1) (1988) 3339.
Google Scholar
[22]
A. Yi-Yan, Index instabilities in proton-exchanged LlNbO3 waveguides, Appl. Phys. Lett. 42(8) (1983) 633–635.
DOI: 10.1063/1.94055
Google Scholar
[23]
C. Canali, C. Bernadi, M. de Sario et al., Effect of water vapor on refractive index profiles in Ti: LiNbO3 planar waveguides, J. Lightwave technol. 4(7) (1986) 951–955.
DOI: 10.1109/jlt.1986.1074820
Google Scholar
[24]
C. Canali, C. de Bernadi, M. de Sario et al., Strelike refractive-index increase induced in planar Ti: LiNbO3 waveguides diffused in O2:H2O atmosphere, Appl. Opt. 27(19) (1988) 3957–3958.
DOI: 10.1364/ao.27.003957
Google Scholar
[25]
R. Bhadra, M.Grimsditch, I. Murduck, Elastic constants of metal-insulator superlattices, Appl. Phys. Lett. 5(15) (1989) 1409–1411.
DOI: 10.1063/1.100682
Google Scholar
[26]
M.L. Hubenran, M. Grimsditch, Lattice expansions and contractions in metallic superlattices, Phys. Rev. Lett. 62(12) (1989) 1403–1406.
DOI: 10.1103/physrevlett.62.1403
Google Scholar
[27]
G.W. Arnold, Ambient hydratation of near-surface region in H/D inmlanted fused silica, Nucl. Instrum. and Meth. Phys. Res. 32(1-4) (1988) 268–271.
Google Scholar
[28]
A. Jovanovic, S. Wohlecke et al., Infrared spectroscopy of hydrogen centres in undoped and iron-doped BaTiO3 crystals, J. Phys. and Solids. 50(6) (1989) 623–627.
DOI: 10.1016/0022-3697(89)90457-5
Google Scholar
[29]
O.P. Kaminov, Crystallographic and electro-optical properties of cleaved LiNbO3, J. Appl. Phys. 51(8) (1980) 4379–4384.
Google Scholar
[30]
W. Kleemann, S. Kitz, P.I. Schafer et a1., Strain induced quadrupolar ordering of dipole-glass-like K1-xLixTaO3, Phys. Rev.B: Condens. Mater. 37(10) (1988) 5856–5859.
Google Scholar
[31]
W. Bollman Diffusion of hydrogen (OH-ions) in LiNbO3 crystals, Phys. Stat. Sol. A104(2) (1987) 643–648.
DOI: 10.1002/pssa.2211040215
Google Scholar
[32]
D.M. Smyth, Defects chemistry of LiNbO3, ISAF 86: Proc. 6 IEEE Int. Symp. Appl. Ferroelec. Bethlehem, Pa, 8-11 June 1986, New York, N.Y. (1986) 115–117.
Google Scholar
[33]
C.E. Rice, I.L. Jackel, Structural changes with compositionand temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.
DOI: 10.1016/0025-5408(84)90126-0
Google Scholar
[34]
N.Goto, Gaz Lam Yip, Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid, Appl. Opt. 28(1) (1989) 60–65.
DOI: 10.1364/ao.28.000060
Google Scholar
[35]
A. Loni, R.W. Keys, R.M.de La Rue et al., Optical Characterisation of Z-cut proton-exchanged LiNbO3 wavegiudes fabricated using orthophosphoric and pyrophosphoric acid, IEE Proc. J. 6 (1989) 297–300.
DOI: 10.1049/ip-j.1989.0046
Google Scholar
[36]
J.D. Birelein, A. Ferretti, Y.Gilliam, Fabrication and charaterization of optical wavegiud in KTiOPO4, Appl. Phys. Lett. 50(18) (1987) 1216–1218.
Google Scholar
[37]
A. Lori, R.M. de La Rue, I.M. Winfield, Proton-exchanged lithium niobate planar-optical wavegiudes: chemical and optical properties and room-temperature hydrogen isotropic exchange reactions, J. Appl. Phys. 61(1) (1987) 64–67.
DOI: 10.1063/1.338801
Google Scholar
[38]
A.D. Buckman, R.A. Montgelas, Wavegiuding surface demage layer in LiTaO3, Appl. Opt. 20(1) (1981) 6–8.
Google Scholar
[39]
N.A. Sanford, W.C. Robinson, Secondary-ion mass spectroscopy characterization of proton-exchanged LiNbO3 wavegiudes, Opt. Lett. 10(4) (1985) 190–192.
DOI: 10.1364/ol.10.000190
Google Scholar
[40]
I.M. Skinner, I.M. Naden, B.L. Weiss et al., The modelling of lithium out diffusion in He+ implanted optical waveguides in LiNbO3, Solid-State Electronics 30(1) (1987) 85–88.
DOI: 10.1016/0038-1101(87)90033-5
Google Scholar