The Effect of Protonation on Structural Modification in Layers

Abstract:

Article Preview

The results on protonation in solutions and melts of salts and acids, as well as structural changes associated with the formation of nanocomposition structure of materials are presented. It is shown by structural methods that proton localization is invariant to the volume in the protonated layer and is accompanied by changes between oxygen distances, enlargement of the unit cell and transition to the rhombic phase. Having the maximum crystal-chemical activity, protons create a hexagonal lattice in accordance with the features of equipotential pictures of their nonequilibrium electrostatic fields. The increase in the integral intensity of reflexes observed on neutronograms of protonated LiNbO3 (102), (111), (113) it is associated with the ordering of protons in the hexagonal oxygen sublattice of the initial phase.

Info:

Periodical:

Edited by:

Dr. Anatoliy Surzhikov

Pages:

21-29

Citation:

Y. Borodin et al., "The Effect of Protonation on Structural Modification in Layers", Materials Science Forum, Vol. 942, pp. 21-29, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] S.V. Rudnev, Application of elliptic Riemannian geometry to problems of crystallography, Comput. Math. Applic. 6(5-8) (1988) 597–616.

DOI: https://doi.org/10.1016/b978-0-08-037014-9.50031-5

[2] N. M. p Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Defects in single-crystal silicon induced by hydrogenation, Phys Rev. B35(8) (1987) 4166.

DOI: https://doi.org/10.1103/physrevb.35.4166

[3] S.N. Sutulin, V.I. Vereshchagin, S.V. Rudnev, IR spectroscopy studies of OH-groups in H:LiNbO3, News AS USSR, Ser. Inorganic material 25(10) (1990) 1923-1925.

[4] S. Furukawa, T. Miyasato Three-dimensional quantum well effects in ultrafiae silicon particles, Jap. J. Appl. Phys. 27(11) (1988) L2207–L2209.

DOI: https://doi.org/10.1143/jjap.27.l2207

[5] A.A. Berezin, Isotopic superlattices and isotopicaliy ordered structures, Solid State Соmmun. 54(8) (1988) 819–82I.

[6] Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conference Series: Materials Science and Engineering 110(1) (2016) 012072.

DOI: https://doi.org/10.1088/1757-899x/110/1/012072

[7] I.L Fourguet, M.F. Rcriou, R. De Papeet, La reaction d'ecn- ange topotactique LiNbO3 - HNbO3 on milieu scide, Revue de Chimie minerale, 21(2) (1984) 385–590.

[8] I.L. Fourguuet et al., HHbO3: Structure and NMR study, Solid State Ionika, North-Holland Publishing Company 9(10) (1983) 1011–1044.

[9] Yong Yan, Dusn Fang, Ju Lin Peng, L. A. Nursill, Electron micioscopic and diffraction study of proton-exchanged LiNbO3, Ferroelectrics 77(1) (I988) 91–100.

DOI: https://doi.org/10.1080/00150198808223230

[10] V.I. Vereshchagin, M.A. Sergeev, B.S. Semukhin, Y.V. Borodin, Boron Nitride With Packets of Nanotubes for Microcomposite Ceramics, Refractories and Industrial Ceramics 41(11-12) (2000) 440–443.

DOI: https://doi.org/10.1023/a:1011322504412

[11] Y. V. Borodin A. N. Sergeev, The formation of nanocomposition structure in crystals,2008 Proceedings of the 3rd International Forum on Strategic Technology, IFOST 2008 (2008) 174-176.

DOI: https://doi.org/10.1109/ifost.2008.4603001

[12] H. Tsu, E.H. Nicollian, A. Reisman, Passivation delects in poiyciyetalline superlattices and quantum well structures, Appl. Phys. Lett. 55(18) (I989) 1897–1899.

DOI: https://doi.org/10.1063/1.102328

[13] Y.V. Borodin, Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions, Technical Physics 60(1) (2015) 107-111.

DOI: https://doi.org/10.1134/s1063784215010065

[14] Y. Borodin, Effect of protonation on the formation of nanocomposition structure in crystals, Proceedings of the 6th International Forum on Strategic Technology, IFOST 1 (2011) 218–221.

DOI: https://doi.org/10.1109/ifost.2011.6021007

[15] W.E. Lee, N.A. Sanford, A.H. Heuer, Direct observation of structural phase changes in proton-exchanged LiNbO3 waveguides using hansmission electron microscopy, Appl. Phys. 59(8) (1986) 2629–2633.

DOI: https://doi.org/10.1063/1.336965

[16] L.M. Walpita, Optical waveguide dispersion in quantium well structures, J. Appl. Phys. 24 Pt. 2(6) (1986) 472–474.

[17] H. Zhou, H. Shen, F. Yuan et al., Study of anomalies near 75o С in LiNbO3 by X-ray diffraction // Clin. Phys.Lett. 3(8) (1986) 373–376.

[18] I. Hartwig, Y. Lerche, Anisotropic deformation of a crystal plate and its analysis with X-ray diffraction methods, Phys. Status solidi 109(1) (1983) 79–91.

DOI: https://doi.org/10.1002/pssa.2211090107

[19] C.E. Rice, I.L. Jackel, Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.

DOI: https://doi.org/10.1016/0025-5408(84)90126-0

[20] С.E. Rice, The structure and properties of Li1-xHxNbO3, J. Solid State Chem. 64(2) (1986) 188–199.

DOI: https://doi.org/10.1016/0022-4596(86)90138-6

[21] N. Kumada, S. Muramau, P. Muto et al., Topochemical reactions of LixNbO3, J. Solid State Chem. 73(1) (1988) 3339.

[22] A. Yi-Yan, Index instabilities in proton-exchanged LlNbO3 waveguides, Appl. Phys. Lett. 42(8) (1983) 633–635.

DOI: https://doi.org/10.1063/1.94055

[23] C. Canali, C. Bernadi, M. de Sario et al., Effect of water vapor on refractive index profiles in Ti: LiNbO3 planar waveguides, J. Lightwave technol. 4(7) (1986) 951–955.

DOI: https://doi.org/10.1109/jlt.1986.1074820

[24] C. Canali, C. de Bernadi, M. de Sario et al., Strelike refractive-index increase induced in planar Ti: LiNbO3 waveguides diffused in O2:H2O atmosphere, Appl. Opt. 27(19) (1988) 3957–3958.

DOI: https://doi.org/10.1364/ao.27.003957

[25] R. Bhadra, M.Grimsditch, I. Murduck, Elastic constants of metal-insulator superlattices, Appl. Phys. Lett. 5(15) (1989) 1409–1411.

DOI: https://doi.org/10.1063/1.100682

[26] M.L. Hubenran, M. Grimsditch, Lattice expansions and contractions in metallic superlattices, Phys. Rev. Lett. 62(12) (1989) 1403–1406.

DOI: https://doi.org/10.1103/physrevlett.62.1403

[27] G.W. Arnold, Ambient hydratation of near-surface region in H/D inmlanted fused silica, Nucl. Instrum. and Meth. Phys. Res. 32(1-4) (1988) 268–271.

[28] A. Jovanovic, S. Wohlecke et al., Infrared spectroscopy of hydrogen centres in undoped and iron-doped BaTiO3 crystals, J. Phys. and Solids. 50(6) (1989) 623–627.

DOI: https://doi.org/10.1016/0022-3697(89)90457-5

[29] O.P. Kaminov, Crystallographic and electro-optical properties of cleaved LiNbO3, J. Appl. Phys. 51(8) (1980) 4379–4384.

[30] W. Kleemann, S. Kitz, P.I. Schafer et a1., Strain induced quadrupolar ordering of dipole-glass-like K1-xLixTaO3, Phys. Rev.B: Condens. Mater. 37(10) (1988) 5856–5859.

DOI: https://doi.org/10.1103/physrevb.37.5856

[31] W. Bollman Diffusion of hydrogen (OH-ions) in LiNbO3 crystals, Phys. Stat. Sol. A104(2) (1987) 643–648.

DOI: https://doi.org/10.1002/pssa.2211040215

[32] D.M. Smyth, Defects chemistry of LiNbO3, ISAF 86: Proc. 6 IEEE Int. Symp. Appl. Ferroelec. Bethlehem, Pa, 8-11 June 1986, New York, N.Y. (1986) 115–117.

[33] C.E. Rice, I.L. Jackel, Structural changes with compositionand temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.

DOI: https://doi.org/10.1016/0025-5408(84)90126-0

[34] N.Goto, Gaz Lam Yip, Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid, Appl. Opt. 28(1) (1989) 60–65.

DOI: https://doi.org/10.1364/ao.28.000060

[35] A. Loni, R.W. Keys, R.M.de La Rue et al., Optical Characterisation of Z-cut proton-exchanged LiNbO3 wavegiudes fabricated using orthophosphoric and pyrophosphoric acid, IEE Proc. J. 6 (1989) 297–300.

DOI: https://doi.org/10.1049/ip-j.1989.0046

[36] J.D. Birelein, A. Ferretti, Y.Gilliam, Fabrication and charaterization of optical wavegiud in KTiOPO4, Appl. Phys. Lett. 50(18) (1987) 1216–1218.

[37] A. Lori, R.M. de La Rue, I.M. Winfield, Proton-exchanged lithium niobate planar-optical wavegiudes: chemical and optical properties and room-temperature hydrogen isotropic exchange reactions, J. Appl. Phys. 61(1) (1987) 64–67.

DOI: https://doi.org/10.1063/1.338801

[38] A.D. Buckman, R.A. Montgelas, Wavegiuding surface demage layer in LiTaO3, Appl. Opt. 20(1) (1981) 6–8.

[39] N.A. Sanford, W.C. Robinson, Secondary-ion mass spectroscopy characterization of proton-exchanged LiNbO3 wavegiudes, Opt. Lett. 10(4) (1985) 190–192.

[40] I.M. Skinner, I.M. Naden, B.L. Weiss et al., The modelling of lithium out diffusion in He+ implanted optical waveguides in LiNbO3, Solid-State Electronics 30(1) (1987) 85–88.

DOI: https://doi.org/10.1016/0038-1101(87)90033-5