The Effect of Protonation on Structural Modification in Layers

Article Preview

Abstract:

The results on protonation in solutions and melts of salts and acids, as well as structural changes associated with the formation of nanocomposition structure of materials are presented. It is shown by structural methods that proton localization is invariant to the volume in the protonated layer and is accompanied by changes between oxygen distances, enlargement of the unit cell and transition to the rhombic phase. Having the maximum crystal-chemical activity, protons create a hexagonal lattice in accordance with the features of equipotential pictures of their nonequilibrium electrostatic fields. The increase in the integral intensity of reflexes observed on neutronograms of protonated LiNbO3 (102), (111), (113) it is associated with the ordering of protons in the hexagonal oxygen sublattice of the initial phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-29

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Rudnev, Application of elliptic Riemannian geometry to problems of crystallography, Comput. Math. Applic. 6(5-8) (1988) 597–616.

DOI: 10.1016/b978-0-08-037014-9.50031-5

Google Scholar

[2] N. M. p Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Defects in single-crystal silicon induced by hydrogenation, Phys Rev. B35(8) (1987) 4166.

DOI: 10.1103/physrevb.35.4166

Google Scholar

[3] S.N. Sutulin, V.I. Vereshchagin, S.V. Rudnev, IR spectroscopy studies of OH-groups in H:LiNbO3, News AS USSR, Ser. Inorganic material 25(10) (1990) 1923-1925.

Google Scholar

[4] S. Furukawa, T. Miyasato Three-dimensional quantum well effects in ultrafiae silicon particles, Jap. J. Appl. Phys. 27(11) (1988) L2207–L2209.

DOI: 10.1143/jjap.27.l2207

Google Scholar

[5] A.A. Berezin, Isotopic superlattices and isotopicaliy ordered structures, Solid State Соmmun. 54(8) (1988) 819–82I.

Google Scholar

[6] Y.V. Borodin, D.S. Ermolaev, V. Pak, K. Zhang, Research of nanocomposite structure of boron nitride at proton radiation, IOP Conference Series: Materials Science and Engineering 110(1) (2016) 012072.

DOI: 10.1088/1757-899x/110/1/012072

Google Scholar

[7] I.L Fourguet, M.F. Rcriou, R. De Papeet, La reaction d'ecn- ange topotactique LiNbO3 - HNbO3 on milieu scide, Revue de Chimie minerale, 21(2) (1984) 385–590.

Google Scholar

[8] I.L. Fourguuet et al., HHbO3: Structure and NMR study, Solid State Ionika, North-Holland Publishing Company 9(10) (1983) 1011–1044.

Google Scholar

[9] Yong Yan, Dusn Fang, Ju Lin Peng, L. A. Nursill, Electron micioscopic and diffraction study of proton-exchanged LiNbO3, Ferroelectrics 77(1) (I988) 91–100.

Google Scholar

[10] V.I. Vereshchagin, M.A. Sergeev, B.S. Semukhin, Y.V. Borodin, Boron Nitride With Packets of Nanotubes for Microcomposite Ceramics, Refractories and Industrial Ceramics 41(11-12) (2000) 440–443.

DOI: 10.1023/a:1011322504412

Google Scholar

[11] Y. V. Borodin A. N. Sergeev, The formation of nanocomposition structure in crystals,2008 Proceedings of the 3rd International Forum on Strategic Technology, IFOST 2008 (2008) 174-176.

DOI: 10.1109/ifost.2008.4603001

Google Scholar

[12] H. Tsu, E.H. Nicollian, A. Reisman, Passivation delects in poiyciyetalline superlattices and quantum well structures, Appl. Phys. Lett. 55(18) (I989) 1897–1899.

DOI: 10.1063/1.102328

Google Scholar

[13] Y.V. Borodin, Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions, Technical Physics 60(1) (2015) 107-111.

DOI: 10.1134/s1063784215010065

Google Scholar

[14] Y. Borodin, Effect of protonation on the formation of nanocomposition structure in crystals, Proceedings of the 6th International Forum on Strategic Technology, IFOST 1 (2011) 218–221.

DOI: 10.1109/ifost.2011.6021007

Google Scholar

[15] W.E. Lee, N.A. Sanford, A.H. Heuer, Direct observation of structural phase changes in proton-exchanged LiNbO3 waveguides using hansmission electron microscopy, Appl. Phys. 59(8) (1986) 2629–2633.

DOI: 10.1063/1.336965

Google Scholar

[16] L.M. Walpita, Optical waveguide dispersion in quantium well structures, J. Appl. Phys. 24 Pt. 2(6) (1986) 472–474.

Google Scholar

[17] H. Zhou, H. Shen, F. Yuan et al., Study of anomalies near 75o С in LiNbO3 by X-ray diffraction // Clin. Phys.Lett. 3(8) (1986) 373–376.

Google Scholar

[18] I. Hartwig, Y. Lerche, Anisotropic deformation of a crystal plate and its analysis with X-ray diffraction methods, Phys. Status solidi 109(1) (1983) 79–91.

DOI: 10.1002/pssa.2211090107

Google Scholar

[19] C.E. Rice, I.L. Jackel, Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.

DOI: 10.1016/0025-5408(84)90126-0

Google Scholar

[20] С.E. Rice, The structure and properties of Li1-xHxNbO3, J. Solid State Chem. 64(2) (1986) 188–199.

DOI: 10.1016/0022-4596(86)90138-6

Google Scholar

[21] N. Kumada, S. Muramau, P. Muto et al., Topochemical reactions of LixNbO3, J. Solid State Chem. 73(1) (1988) 3339.

Google Scholar

[22] A. Yi-Yan, Index instabilities in proton-exchanged LlNbO3 waveguides, Appl. Phys. Lett. 42(8) (1983) 633–635.

DOI: 10.1063/1.94055

Google Scholar

[23] C. Canali, C. Bernadi, M. de Sario et al., Effect of water vapor on refractive index profiles in Ti: LiNbO3 planar waveguides, J. Lightwave technol. 4(7) (1986) 951–955.

DOI: 10.1109/jlt.1986.1074820

Google Scholar

[24] C. Canali, C. de Bernadi, M. de Sario et al., Strelike refractive-index increase induced in planar Ti: LiNbO3 waveguides diffused in O2:H2O atmosphere, Appl. Opt. 27(19) (1988) 3957–3958.

DOI: 10.1364/ao.27.003957

Google Scholar

[25] R. Bhadra, M.Grimsditch, I. Murduck, Elastic constants of metal-insulator superlattices, Appl. Phys. Lett. 5(15) (1989) 1409–1411.

DOI: 10.1063/1.100682

Google Scholar

[26] M.L. Hubenran, M. Grimsditch, Lattice expansions and contractions in metallic superlattices, Phys. Rev. Lett. 62(12) (1989) 1403–1406.

DOI: 10.1103/physrevlett.62.1403

Google Scholar

[27] G.W. Arnold, Ambient hydratation of near-surface region in H/D inmlanted fused silica, Nucl. Instrum. and Meth. Phys. Res. 32(1-4) (1988) 268–271.

Google Scholar

[28] A. Jovanovic, S. Wohlecke et al., Infrared spectroscopy of hydrogen centres in undoped and iron-doped BaTiO3 crystals, J. Phys. and Solids. 50(6) (1989) 623–627.

DOI: 10.1016/0022-3697(89)90457-5

Google Scholar

[29] O.P. Kaminov, Crystallographic and electro-optical properties of cleaved LiNbO3, J. Appl. Phys. 51(8) (1980) 4379–4384.

Google Scholar

[30] W. Kleemann, S. Kitz, P.I. Schafer et a1., Strain induced quadrupolar ordering of dipole-glass-like K1-xLixTaO3, Phys. Rev.B: Condens. Mater. 37(10) (1988) 5856–5859.

Google Scholar

[31] W. Bollman Diffusion of hydrogen (OH-ions) in LiNbO3 crystals, Phys. Stat. Sol. A104(2) (1987) 643–648.

DOI: 10.1002/pssa.2211040215

Google Scholar

[32] D.M. Smyth, Defects chemistry of LiNbO3, ISAF 86: Proc. 6 IEEE Int. Symp. Appl. Ferroelec. Bethlehem, Pa, 8-11 June 1986, New York, N.Y. (1986) 115–117.

Google Scholar

[33] C.E. Rice, I.L. Jackel, Structural changes with compositionand temperature in rhombohedral Li1-xHxNbO3, Mater. Res. Bull. 19(5) (1984) 591–597.

DOI: 10.1016/0025-5408(84)90126-0

Google Scholar

[34] N.Goto, Gaz Lam Yip, Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid, Appl. Opt. 28(1) (1989) 60–65.

DOI: 10.1364/ao.28.000060

Google Scholar

[35] A. Loni, R.W. Keys, R.M.de La Rue et al., Optical Characterisation of Z-cut proton-exchanged LiNbO3 wavegiudes fabricated using orthophosphoric and pyrophosphoric acid, IEE Proc. J. 6 (1989) 297–300.

DOI: 10.1049/ip-j.1989.0046

Google Scholar

[36] J.D. Birelein, A. Ferretti, Y.Gilliam, Fabrication and charaterization of optical wavegiud in KTiOPO4, Appl. Phys. Lett. 50(18) (1987) 1216–1218.

Google Scholar

[37] A. Lori, R.M. de La Rue, I.M. Winfield, Proton-exchanged lithium niobate planar-optical wavegiudes: chemical and optical properties and room-temperature hydrogen isotropic exchange reactions, J. Appl. Phys. 61(1) (1987) 64–67.

DOI: 10.1063/1.338801

Google Scholar

[38] A.D. Buckman, R.A. Montgelas, Wavegiuding surface demage layer in LiTaO3, Appl. Opt. 20(1) (1981) 6–8.

Google Scholar

[39] N.A. Sanford, W.C. Robinson, Secondary-ion mass spectroscopy characterization of proton-exchanged LiNbO3 wavegiudes, Opt. Lett. 10(4) (1985) 190–192.

DOI: 10.1364/ol.10.000190

Google Scholar

[40] I.M. Skinner, I.M. Naden, B.L. Weiss et al., The modelling of lithium out diffusion in He+ implanted optical waveguides in LiNbO3, Solid-State Electronics 30(1) (1987) 85–88.

DOI: 10.1016/0038-1101(87)90033-5

Google Scholar