Characterization of Shivirtui Zeolite Modified with Aluminum Oxyhydroxide Nanofibers

Article Preview

Abstract:

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-49

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Breck, Zeolite Molecular Sieves, Wiley, New York, (1974).

Google Scholar

[2] C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).

Google Scholar

[3] J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175–188.

DOI: 10.1016/s0167-2738(00)00632-9

Google Scholar

[4] J. Cejka, H. van Bekkum, A. Corma, F. Schueth, Introduction to Zeolite Molecular Sieves, Elsevier, Oxford UK, (2007).

Google Scholar

[5] B. Yilmaz, U. Müller, Catalytic applications of zeolites in chemical industry, Top. Catal. 52 (2009) 888–895.

DOI: 10.1007/s11244-009-9226-0

Google Scholar

[6] U C. Karakurt, H. Kurama, İ.B. Topçuc, Utilization of natural zeolite in aerated concrete production, Cem. Concr. Compos. 32(1) (2010) 1–8.

DOI: 10.1016/j.cemconcomp.2009.10.002

Google Scholar

[7] B. Ahmadi, M. Shekarchi, Use of natural zeolite as a supplementary cementitious material, Cem. Concr. Compos. 32(2) (2010) 134–141.

DOI: 10.1016/j.cemconcomp.2009.10.006

Google Scholar

[8] A.A. Ramezanianpour, A. Kazemian, M. Sarvari, B. Ahmadi, Use of natural zeolite to produce self-consolidating concrete with low portland cement content and high durability, J. Mater. Civ. Eng. 25 (2013) 589 – 596.

DOI: 10.1061/(asce)mt.1943-5533.0000621

Google Scholar

[9] F.A. Sabet, N.A. Libre, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash, Construction and Building Materials 44 (2013) 175–184.

DOI: 10.1016/j.conbuildmat.2013.02.069

Google Scholar

[10] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2004) 300–314.

DOI: 10.1016/j.jcis.2004.08.028

Google Scholar

[11] K. Saltali, A. Sari, M. Aydin, Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality, J. Hazard. Mater. 141 (2007) 258–263.

DOI: 10.1016/j.jhazmat.2006.06.124

Google Scholar

[12] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11–24.

Google Scholar

[13] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418.

Google Scholar

[14] O.B. Nazarenko, R.F. Zarubina, A.S. Veisgeim, Badinsk zeolite application for ground water treatment, in: Proceedings of 7th International Forum on Strategic Technology IFOST-2012, V. 1, TPU, Tomsk, Russia, 2012, p.281–284.

DOI: 10.1109/ifost.2012.6357484

Google Scholar

[15] M.W. Ackley, S.U. Rege, H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous and Mesoporous Mater. 61 (2003) 25–42.

DOI: 10.1016/s1387-1811(03)00353-6

Google Scholar

[16] P.L. Llewellyn, G. Maurin, Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials, Comptes Rendus Chimie 8(3–4) (2005) 283–302.

DOI: 10.1016/j.crci.2004.11.004

Google Scholar

[17] T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies, J. Petrol. Sci. Eng. 94–95 (2012) 123–154.

DOI: 10.1016/j.petrol.2012.06.016

Google Scholar

[18] S.M. Baghbanian, N. Rezaeia, H. Tashakkorianb, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media, Green Chem. 12 (2013) 3446-3458.

DOI: 10.1039/c3gc41302k

Google Scholar

[19] L. Gurchumelia, G. Baliashvili, F. Bezhanov, N. Sarjveladze, Development of novel composite fire-extinguishing powders on the basis of mineral raw materials, in: J. de las Heras, C.A. Brebbia, D. Viegas, V. Leone (Eds.), Modelling, Monitoring and Management of Forest Fires I, WIT Transactions on Ecology and the Environment, V. 119, WIT Press, 2008, p.61–67.

DOI: 10.2495/fiva080071

Google Scholar

[20] L. Gurchumelia, Z. Khutsishvili, L. Nadareishvili, S. Tkemaladze, New types of halogen-free, eco-safe fire extinguishing composite powders and evaluation of their efficiency, Bulletin of the Georgian National Academy of Sciences 9(2) (2015) 65–70.

Google Scholar

[21] X. Ni, K. Kuang, X. Wang, G. Liao, A new type of BTP/zeolites nanocomposites as mixed-phase fire suppressant: preparation, characterization, and extinguishing mechanism discussion, J. Fire Sci. 28 (2009) 5–25.

DOI: 10.1177/0734904109340763

Google Scholar

[22] E.D. Weil, Fire-protective and flame-retardant coatings – a state-of-the-art review, J. Fire Sci. 29 (2011) 259–296.

DOI: 10.1177/0734904110395469

Google Scholar

[23] S. Bourbigot, M. Le Bras, Synergy in intumescence: overview of the use of zeolites, in: M. Le Bras, G. Camino, S. Bourbigot and R. Delobel (Eds.), Fire Retardancy of Polymers: the Use of Intumescence, RSC, Cambridge, UK, 1998, p.222–234.

DOI: 10.1533/9781845698584.3.222

Google Scholar

[24] H. Demir, E. Arkis, D. Balköse, S. Ülkü, Synergistic effect of natural zeolites on flame retardant additives, Polym. Degrad. Stab. 89 (2005) 478–483.

DOI: 10.1016/j.polymdegradstab.2005.01.028

Google Scholar

[25] Q. Zhao, Y. Hu, X. Wang, Mechanical performance and flame retardancy of polypropylene composites containing zeolite and multiwalled carbon nanotubes, J. Appl. Polym. Sci. 133 (2015) 42875.

DOI: 10.1002/app.42875

Google Scholar

[26] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098–101.

DOI: 10.1002/pat.3776

Google Scholar

[27] A. Ruíz-Baltazar, R. Esparza, M. Gonzalez, G. Rosas, R. Pérez, Preparation and characterization of natural zeolite modified with iron nanoparticles, Journal of Nanomaterials 2015 (2015) 364763.

DOI: 10.1155/2015/364763

Google Scholar

[28] W. Trisunaryanti, R. Shiba, M. Miura, M. Nomura, N. Nishiyama, M. Matsukata, Characterization and modification of Indonesian natural zeolites and their properties for hydrocracking of a paraffin, Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute) 39(1) (1996) 20–25.

DOI: 10.1627/jpi1958.39.20

Google Scholar

[29] I. Salim, W. Trisunaryanti, Triyono, Y. Arryanto, Hycrodracking of coconut oil into gasoline fraction using Ni/modified natural zeolite catalyst, International Journal of ChemTech Research 9(04) (2016) 492–500.

Google Scholar

[30] J. Waluyo, I.G.B.N. Makertihartha, H. Susanto, The effect of acid leaching time in modifying natural zeolite as catalyst for toluene steam reforming, MATEC Web of Conferences 159 (2018) 02046.

DOI: 10.1051/matecconf/201815902046

Google Scholar

[31] S. J. Wilson, The development of porous microstructures during the dehydration of boehmite, Mineral. Mag. 43 (1979) 301–306.

DOI: 10.1180/minmag.1979.043.326.14

Google Scholar

[32] P. Alphonse, M. Courty, Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 425(1-2) (2005) 75–89.

DOI: 10.1016/j.tca.2004.06.009

Google Scholar

[33] M.I. Lerner, N.V. Svarovskaya, S.G. Psakhie, O.V. Bakina, Production technology, characteristics, and some applications of electric explosion nanopowders of metals, Nanotechnologies in Russia 4(11–12) (2009) 741–757.

DOI: 10.1134/s1995078009110019

Google Scholar

[34] A. Zykova, A. Livanova, N. Kosova, A. Godymchuk, G. Mamontov, Aluminium oxide-hydroxides obtained by hydrothermal synthesis: influence of thermal treatment on phase composition and textural characteristics, IOP Conf. Series: Mater. Sci. Eng. 98 (2015) 012032.

DOI: 10.1088/1757-899x/98/1/012032

Google Scholar

[35] L.N. Shiyan, N.A. Yavorovskii, A.V. Pustovalov, E.N. Gryaznova, Influence of the type of electric discharge on the properties of the produced aluminium nanoparticles, IOP Conf. Series: Mater. Sci. Eng. 81 (2015) 012077.

DOI: 10.1088/1757-899x/81/1/012077

Google Scholar

[36] D. Belitskus, Reaction of aluminum with sodium hydroxide solution as a source of hydrogen, J. Electrochem. Soc. 117 (1970) 1097–1099.

DOI: 10.1149/1.2407730

Google Scholar

[37] H. Nie, Z. Shasha, M. Schoenitz, E.L. Dreizin, Reaction interface between aluminum and water, Int. J. Hydrogen Energy 38 (2013) 11222–11232.

DOI: 10.1016/j.ijhydene.2013.06.097

Google Scholar

[38] M. Schoenitz, C.-M. Chen, E.L. Dreizin, Oxidation of aluminum particles in the presence of water, J. Phys. Chem. B 113(15) (2009) 5136–5140.

DOI: 10.1021/jp807801m

Google Scholar

[39] E. Polat, M. Karaca, H. Demir, A. Naci Onus, Use of natural zeolite (clinoptilolite) in agriculture, J. Fruit Ornam. Plant Res. Special ed. 12 (2004) 183–189.

Google Scholar

[40] J.D. Russell, Infrared methods, in: M. J. Wilson (Ed.), A Hand Book of Determinative Methods in Clay Mineralogy, Blackie and Son Ltd, NY, 1987, p.133.

Google Scholar

[41] A.B. Kiss, G. Keresztury, L. Farkas, Raman and ir spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D172h space group, Spectrochim. Acta, Part A, 36 (1980) 653–658.

DOI: 10.1016/0584-8539(80)80024-9

Google Scholar

[42] S. Music, D. Dragcevic, S. Popovic, Hydrothermal crystallization of boehmite sol from freshly prepared aluminium hydroxide, Mater. Lett. 40 (1999) 269–274.

DOI: 10.1016/s0167-577x(99)00088-9

Google Scholar

[43] F. Salimi, M. Abdollahifar, P. Jafari, M. Hidaryan, A new approach to synthesis and growth of nanocrystalline AlOOH with high pore volume, J. Serb. Chem. Soc. 82 (2) (2017) 203–213.

DOI: 10.2298/jsc160713006s

Google Scholar

[44] Bemš, J., Králík, T., Kubančák, J., Vašíček, J., Starý, O. Radioactive waste disposal fees-Methodology for calculation // Radiation Physics and Chemistry, 2014. 104, 398-403 https://doi.org/10.1016/j.radphyschem.2014.02.008.

DOI: 10.1016/j.radphyschem.2014.02.008

Google Scholar

[45] M.L. Guzmán-Castillo, X. Bokhimi, J.A. Toledo-Antonio, J. Salmones-Blásquez, F. Hernández-Beltran, Effect of boehmite crystallite size and steaming on alumina properties, J. Phys. Chem. B, 105(11) (2001), p.2099–2106.

DOI: 10.1021/jp001024v

Google Scholar

[46] M. Nguefack, A.F. Popa, S. Rossignol, C. Kappenstein, Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite, Phys. Chem. Chem. Phys. 5 (2003) 4279–4289.

DOI: 10.1039/b306170a

Google Scholar

[47] A. Pierre, C. Matthieu, Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 425 (2005) 75–89.

Google Scholar