Characterization of Shivirtui Zeolite Modified with Aluminum Oxyhydroxide Nanofibers

Abstract:

Article Preview

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.

Info:

Periodical:

Edited by:

Dr. Anatoliy Surzhikov

Pages:

40-49

Citation:

Y. Murashkina and O. B. Nazarenko, "Characterization of Shivirtui Zeolite Modified with Aluminum Oxyhydroxide Nanofibers", Materials Science Forum, Vol. 942, pp. 40-49, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] D. Breck, Zeolite Molecular Sieves, Wiley, New York, (1974).

[2] C. Murphy, O. Hrycyk, W. Gleason, Natural Zeolites: Occurence, Properties, Use. Pergamon, Oxford, (1978).

[3] J. Weitkamp, Zeolites and catalysis, Solid State Ionics 131 (2000) 175–188.

[4] J. Cejka, H. van Bekkum, A. Corma, F. Schueth, Introduction to Zeolite Molecular Sieves, Elsevier, Oxford UK, (2007).

[5] B. Yilmaz, U. Müller, Catalytic applications of zeolites in chemical industry, Top. Catal. 52 (2009) 888–895.

DOI: https://doi.org/10.1007/s11244-009-9226-0

[6] U C. Karakurt, H. Kurama, İ.B. Topçuc, Utilization of natural zeolite in aerated concrete production, Cem. Concr. Compos. 32(1) (2010) 1–8.

[7] B. Ahmadi, M. Shekarchi, Use of natural zeolite as a supplementary cementitious material, Cem. Concr. Compos. 32(2) (2010) 134–141.

[8] A.A. Ramezanianpour, A. Kazemian, M. Sarvari, B. Ahmadi, Use of natural zeolite to produce self-consolidating concrete with low portland cement content and high durability, J. Mater. Civ. Eng. 25 (2013) 589 – 596.

DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0000621

[9] F.A. Sabet, N.A. Libre, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash, Construction and Building Materials 44 (2013) 175–184.

DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.069

[10] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2004) 300–314.

DOI: https://doi.org/10.1016/j.jcis.2004.08.028

[11] K. Saltali, A. Sari, M. Aydin, Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality, J. Hazard. Mater. 141 (2007) 258–263.

DOI: https://doi.org/10.1016/j.jhazmat.2006.06.124

[12] S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010) 11–24.

[13] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418.

[14] O.B. Nazarenko, R.F. Zarubina, A.S. Veisgeim, Badinsk zeolite application for ground water treatment, in: Proceedings of 7th International Forum on Strategic Technology IFOST-2012, V. 1, TPU, Tomsk, Russia, 2012, p.281–284.

DOI: https://doi.org/10.1109/ifost.2012.6357484

[15] M.W. Ackley, S.U. Rege, H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous and Mesoporous Mater. 61 (2003) 25–42.

DOI: https://doi.org/10.1016/s1387-1811(03)00353-6

[16] P.L. Llewellyn, G. Maurin, Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials, Comptes Rendus Chimie 8(3–4) (2005) 283–302.

DOI: https://doi.org/10.1016/j.crci.2004.11.004

[17] T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies, J. Petrol. Sci. Eng. 94–95 (2012) 123–154.

DOI: https://doi.org/10.1016/j.petrol.2012.06.016

[18] S.M. Baghbanian, N. Rezaeia, H. Tashakkorianb, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media, Green Chem. 12 (2013) 3446-3458.

DOI: https://doi.org/10.1039/c3gc41302k

[19] L. Gurchumelia, G. Baliashvili, F. Bezhanov, N. Sarjveladze, Development of novel composite fire-extinguishing powders on the basis of mineral raw materials, in: J. de las Heras, C.A. Brebbia, D. Viegas, V. Leone (Eds.), Modelling, Monitoring and Management of Forest Fires I, WIT Transactions on Ecology and the Environment, V. 119, WIT Press, 2008, p.61–67.

DOI: https://doi.org/10.2495/fiva080071

[20] L. Gurchumelia, Z. Khutsishvili, L. Nadareishvili, S. Tkemaladze, New types of halogen-free, eco-safe fire extinguishing composite powders and evaluation of their efficiency, Bulletin of the Georgian National Academy of Sciences 9(2) (2015) 65–70.

DOI: https://doi.org/10.4172/2157-7048.1000357

[21] X. Ni, K. Kuang, X. Wang, G. Liao, A new type of BTP/zeolites nanocomposites as mixed-phase fire suppressant: preparation, characterization, and extinguishing mechanism discussion, J. Fire Sci. 28 (2009) 5–25.

DOI: https://doi.org/10.1177/0734904109340763

[22] E.D. Weil, Fire-protective and flame-retardant coatings – a state-of-the-art review, J. Fire Sci. 29 (2011) 259–296.

DOI: https://doi.org/10.1177/0734904110395469

[23] S. Bourbigot, M. Le Bras, Synergy in intumescence: overview of the use of zeolites, in: M. Le Bras, G. Camino, S. Bourbigot and R. Delobel (Eds.), Fire Retardancy of Polymers: the Use of Intumescence, RSC, Cambridge, UK, 1998, p.222–234.

DOI: https://doi.org/10.1533/9781845698584.3.222

[24] H. Demir, E. Arkis, D. Balköse, S. Ülkü, Synergistic effect of natural zeolites on flame retardant additives, Polym. Degrad. Stab. 89 (2005) 478–483.

DOI: https://doi.org/10.1016/j.polymdegradstab.2005.01.028

[25] Q. Zhao, Y. Hu, X. Wang, Mechanical performance and flame retardancy of polypropylene composites containing zeolite and multiwalled carbon nanotubes, J. Appl. Polym. Sci. 133 (2015) 42875.

DOI: https://doi.org/10.1002/app.42875

[26] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098–101.

DOI: https://doi.org/10.1002/pat.3776

[27] A. Ruíz-Baltazar, R. Esparza, M. Gonzalez, G. Rosas, R. Pérez, Preparation and characterization of natural zeolite modified with iron nanoparticles, Journal of Nanomaterials 2015 (2015) 364763.

DOI: https://doi.org/10.1155/2015/364763

[28] W. Trisunaryanti, R. Shiba, M. Miura, M. Nomura, N. Nishiyama, M. Matsukata, Characterization and modification of Indonesian natural zeolites and their properties for hydrocracking of a paraffin, Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute) 39(1) (1996) 20–25.

DOI: https://doi.org/10.1627/jpi1958.39.20

[29] I. Salim, W. Trisunaryanti, Triyono, Y. Arryanto, Hycrodracking of coconut oil into gasoline fraction using Ni/modified natural zeolite catalyst, International Journal of ChemTech Research 9(04) (2016) 492–500.

[30] J. Waluyo, I.G.B.N. Makertihartha, H. Susanto, The effect of acid leaching time in modifying natural zeolite as catalyst for toluene steam reforming, MATEC Web of Conferences 159 (2018) 02046.

DOI: https://doi.org/10.1051/matecconf/201815902060

[31] S. J. Wilson, The development of porous microstructures during the dehydration of boehmite, Mineral. Mag. 43 (1979) 301–306.

DOI: https://doi.org/10.1180/minmag.1979.043.326.14

[32] P. Alphonse, M. Courty, Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 425(1-2) (2005) 75–89.

DOI: https://doi.org/10.1016/j.tca.2004.06.009

[33] M.I. Lerner, N.V. Svarovskaya, S.G. Psakhie, O.V. Bakina, Production technology, characteristics, and some applications of electric explosion nanopowders of metals, Nanotechnologies in Russia 4(11–12) (2009) 741–757.

DOI: https://doi.org/10.1134/s1995078009110019

[34] A. Zykova, A. Livanova, N. Kosova, A. Godymchuk, G. Mamontov, Aluminium oxide-hydroxides obtained by hydrothermal synthesis: influence of thermal treatment on phase composition and textural characteristics, IOP Conf. Series: Mater. Sci. Eng. 98 (2015) 012032.

DOI: https://doi.org/10.1088/1757-899x/98/1/012032

[35] L.N. Shiyan, N.A. Yavorovskii, A.V. Pustovalov, E.N. Gryaznova, Influence of the type of electric discharge on the properties of the produced aluminium nanoparticles, IOP Conf. Series: Mater. Sci. Eng. 81 (2015) 012077.

DOI: https://doi.org/10.1088/1757-899x/81/1/012077

[36] D. Belitskus, Reaction of aluminum with sodium hydroxide solution as a source of hydrogen, J. Electrochem. Soc. 117 (1970) 1097–1099.

DOI: https://doi.org/10.1149/1.2407730

[37] H. Nie, Z. Shasha, M. Schoenitz, E.L. Dreizin, Reaction interface between aluminum and water, Int. J. Hydrogen Energy 38 (2013) 11222–11232.

DOI: https://doi.org/10.1016/j.ijhydene.2013.06.097

[38] M. Schoenitz, C.-M. Chen, E.L. Dreizin, Oxidation of aluminum particles in the presence of water, J. Phys. Chem. B 113(15) (2009) 5136–5140.

DOI: https://doi.org/10.1021/jp807801m

[39] E. Polat, M. Karaca, H. Demir, A. Naci Onus, Use of natural zeolite (clinoptilolite) in agriculture, J. Fruit Ornam. Plant Res. Special ed. 12 (2004) 183–189.

[40] J.D. Russell, Infrared methods, in: M. J. Wilson (Ed.), A Hand Book of Determinative Methods in Clay Mineralogy, Blackie and Son Ltd, NY, 1987, p.133.

[41] A.B. Kiss, G. Keresztury, L. Farkas, Raman and ir spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D172h space group, Spectrochim. Acta, Part A, 36 (1980) 653–658.

DOI: https://doi.org/10.1016/0584-8539(80)80024-9

[42] S. Music, D. Dragcevic, S. Popovic, Hydrothermal crystallization of boehmite sol from freshly prepared aluminium hydroxide, Mater. Lett. 40 (1999) 269–274.

DOI: https://doi.org/10.1016/s0167-577x(99)00088-9

[43] F. Salimi, M. Abdollahifar, P. Jafari, M. Hidaryan, A new approach to synthesis and growth of nanocrystalline AlOOH with high pore volume, J. Serb. Chem. Soc. 82 (2) (2017) 203–213.

DOI: https://doi.org/10.2298/jsc160713006s

[44] Bemš, J., Králík, T., Kubančák, J., Vašíček, J., Starý, O. Radioactive waste disposal fees-Methodology for calculation // Radiation Physics and Chemistry, 2014. 104, 398-403 https://doi.org/10.1016/j.radphyschem.2014.02.008.

DOI: https://doi.org/10.1016/j.radphyschem.2014.02.008

[45] M.L. Guzmán-Castillo, X. Bokhimi, J.A. Toledo-Antonio, J. Salmones-Blásquez, F. Hernández-Beltran, Effect of boehmite crystallite size and steaming on alumina properties, J. Phys. Chem. B, 105(11) (2001), p.2099–2106.

DOI: https://doi.org/10.1021/jp001024v

[46] M. Nguefack, A.F. Popa, S. Rossignol, C. Kappenstein, Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite, Phys. Chem. Chem. Phys. 5 (2003) 4279–4289.

DOI: https://doi.org/10.1039/b306170a

[47] A. Pierre, C. Matthieu, Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 425 (2005) 75–89.

DOI: https://doi.org/10.1016/j.tca.2004.06.009