[1]
A. Dugstad, M. Halseid, Internal corrosion in dense phase CO2 transport pipelines-state of the art and the need for further R & D, in: Corrosion 2012, NACE, Houston, TX, 2012, Paper No. 1452.
Google Scholar
[2]
IPCC, Carbon dioxide capture and storage, in B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer (Eds.), Cambridge University Press, New York, 2005, p.141.
Google Scholar
[3]
Y.S. Choi, S. Nesic, Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments, in: Corrosion 2010, NACE, Houston, TX, 2010, Paper No. 10196.
Google Scholar
[4]
A.S. Ruhl, A. Kranzmann, Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities, International Journal of Greenhouse Gas Control. 9 (2012) 85.
DOI: 10.1016/j.ijggc.2012.03.005
Google Scholar
[5]
Y. Xiang, Z. Wang, X.X. Yang, Z. Li, W.D. Ni, The upper limit of moisture content for supercritical CO2 pipeline transport, Journal of Supercritical Fluids. 67 (2012) 14-21.
DOI: 10.1016/j.supflu.2012.03.006
Google Scholar
[6]
Y. Xiang, Z. Wang, Z. Li, W.D. Ni, Effect of temperature on corrosion behavior of X70 steel in high pressure CO2/SO2/O2/H2O environments, Corrosion Engineering, Science and Technology. 48(2013) 121-129.
DOI: 10.1179/1743278212y.0000000050
Google Scholar
[7]
A. Dugstad, Mechanism of protective film formation during CO2 corrosion of carbon steel, in: Corrosion 98, NACE, Houston, TX, 1998, Paper No. 31.
Google Scholar
[8]
Y. Xiang, Z. Wang, C. Xu, C.C. Zhou, Z. Li, W.D. Ni, Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2, Journal of Supercritical Fluids. 58 (2011) 286-294.
DOI: 10.1016/j.supflu.2011.06.007
Google Scholar
[9]
L. Buit, M. Ahmad, W. Mallon, F. Hage, CO2 EuroPipe study of the occurrence of free water in dense phase CO2 transport, Energy Procedia. 4 (2011) 3056-3062.
DOI: 10.1016/j.egypro.2011.02.217
Google Scholar
[10]
A. Valdes, R. Case, M. Ramirez, The effect of small amounts of H2S on CO2 corrosion of carbon steel, in: Corrosion 98, NACE, Houston, TX, 1998, Paper No. 22.
Google Scholar
[11]
B. Brown, K.L. Lee, S. Nesic. Corrosion in multiphase flow containing small amounts of H2S, in: Corrosion 2003, NACE, Houston, TX, 2003, Paper No. 3341.
Google Scholar
[12]
B. Brown, P.S. Reddy, S. Nesic, CO2 corrosion in presence of trace amounts of H2S, in: Corrosion 2003, NACE, Houston, TX, 2003, Paper No. 4736.
Google Scholar
[13]
M. Singer, B. Brown, A. Camacho, Combined effect of CO2, H2S and acetic acid on bottom of the line corrosion, in: Corrosion 2007, NACE, Houston, TX, 2007, Paper No. 661.
Google Scholar
[14]
J. Sun, et al., Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system, Corros. Sci. 107(2016) 31-40.
DOI: 10.1016/j.corsci.2016.02.017
Google Scholar
[15]
S. Nesic, M. Nordsveen, R. Nybor, A mechanistic model for CO2 corrosion of mild steel in the presence of protective iron carbonate scales, Corrosion. 59 (2003) 489.
DOI: 10.5006/1.3277579
Google Scholar
[16]
S. Nesic, Key issues related to modeling of internal corrosion of oil and gas pipelines-a review, Corrosion Science. 49 (2007) 4308.
DOI: 10.1016/j.corsci.2007.06.006
Google Scholar
[17]
I.S. Cole, D.A. Paterson, P. Corrigan, S. Sim, N. Birbilis, State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines, International Journal of Greenhouse Gas Control. 7 (2012) 82-88.
DOI: 10.1016/j.ijggc.2011.12.008
Google Scholar
[18]
K. Chokshi, W. Sun, S. Nesic, Iron carbonate film growth and the effect of inhibition in CO2 corrosion of mild steel, in: Corrosion 2005, NACE, Houston, TX, 2005, Paper No. 285.
Google Scholar
[19]
A.S. Ruhl, A. Kranzmann, Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels, International Journal of Greenhouse Gas Control. 13 (2013) 9-16.
DOI: 10.1016/j.ijggc.2012.12.007
Google Scholar
[20]
Y. Xiang, Z. Wang, Z. Li, W.D. Ni, Effect of exposure time on the corrosion rates of X70 steel in supercritical CO2/SO2/O2/H2O environments, Corrosion. 69 (2013) 251-258.
DOI: 10.5006/0769
Google Scholar
[21]
A.S. Ruhl, A. Kranzmann, Investigation of pipeline corrosion in pressurized CO2 containing impurities, Energy Procedia. 37 (2013) 3131-3136.
DOI: 10.1016/j.egypro.2013.06.199
Google Scholar
[22]
A. Dugstad, M. Halseid, B. Morland, Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines, Energy Procedia. 37 (2013) 2877-2887.
DOI: 10.1016/j.egypro.2013.06.173
Google Scholar