[1]
T. Filetin, B. Liščić, J. Galinec, New Computer-Aided Method for Steel Selection Based on Hardenability, Heat treatment of metals. 3 (1996) 63-66.
Google Scholar
[2]
W. T. Cook, P. F. Morris, L Woollard, Calculated hardenability for improved consistency of properties in heat treatable engineering steels, Journal of Materials Engineering and Performance. 6 (1997) 443–448.
DOI: 10.1007/s11665-997-0114-0
Google Scholar
[3]
J. Trzaska, W. Sitek, L.A. Dobrzański, Selection method of steel grade with required hardenability, Journal of Achievements in Materials and Manufacturing Engineering. 17 (2006) 289-292.
Google Scholar
[4]
H.M. Tawancy, A. Ul-Hamid, N.M. Abbas, Practical Engineering Failure Analysis, CRC Press, (2004).
Google Scholar
[5]
B.A. Miller, Steel hardenability and failure analysis, Practical failure analysis. 1 (2001) 45–50.
DOI: 10.1007/bf02715197
Google Scholar
[6]
G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies, CRC Press, (2006).
Google Scholar
[7]
M. Yamada, L. Yan, R. Takaku, S. Ohsaki, K. Miki, K. Kajikawa, T. Azuma, Effects of Alloying Elements on the Hardenability, Toughness and the Resistance of Stress Corrosion Cracking in 1 to 3 mass% Cr Low Alloy Steel, ISIJ International. 54 (2014) 240-247.
DOI: 10.2355/isijinternational.54.240
Google Scholar
[8]
A.K. Bhargava, M.K. Banerjee, Hardenability of Steel, Comprehensive Materials Finishing. 2 (2017) 50–70.
DOI: 10.1016/b978-0-12-803581-8.09186-4
Google Scholar
[9]
Y. Mae, Correlation of the Effects of Alloying Elements on the Hardenability of Steels to the Diffusion Coefficients of Elements in Fe, International Journal of Materials Science and Applications. 6 (2017) 200-206.
DOI: 10.11648/j.ijmsa.20170604.16
Google Scholar
[10]
F. Han, B. Hwang, D.-W. Suh, Z. Wang, D.L. Lee, S.-J. Kim, Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels, Metals and Materials International. 14 (2008) 667-672.
DOI: 10.3365/met.mat.2008.12.667
Google Scholar
[11]
M. Calcagnotto, D. Ponge, D. Raabe, On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels, Metallurgical and Materials Transactions A. 43 (2012) 37-46.
DOI: 10.1007/s11661-011-0828-3
Google Scholar
[12]
T.I. Titova, N.A. Shulgan, I.Yu. Malykhina, Effect of boron microalloying on the structure and hardenability of building steel, Metal Science and Heat Treatment. 49 (2007) 39-44.
DOI: 10.1007/s11041-007-0007-8
Google Scholar
[13]
Q. Ma, L. Huang, G. Di, Y. Wang, Y. Yang, C. Ma, Effect of microalloying elements on microstructure and properties of quenched and tempered constructional steel, IOP Conf. Ser. Mater. Sci. Eng. 242 (2017) 012036.
DOI: 10.1088/1757-899x/242/1/012036
Google Scholar
[14]
M.V. Maisuradze, M.A. Ryzhkov, Y.V. Yudin, A.A. Kuklina, Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions, Metal Science and Heat Treatment. 59 (2017) 486–490.
DOI: 10.1007/s11041-017-0176-z
Google Scholar
[15]
M.A. Ryzhkov, A.A. Popov, Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels, Metal Science and Heat Treatment. 52 (2011) 612-616.
DOI: 10.1007/s11041-011-9329-7
Google Scholar