Effect of Mesostructural Elements on Radiation-Induced Porosity in 16Cr-19Ni-2Mo-2Mn-Nb-Ti-V-P-B Austenitic Steel

Article Preview

Abstract:

Different mesostructural elements of 16Cr-19Ni-2Mo-2Mn-Nb-Ti-B austenitic steel have been examined after neutron irradiation to damage dose up to 82 dpa by scanning electron microscopy using orientation microscopy (EBSD). Radiation porosity with maximum void size up to 200 nm was observed in austenitic steel structure after neutron irradiation. Nonuniformity, related to mesostructural elements, such as general grain boundaries, special CSL boundaries Σ3 (twins), areas with high density of low-angle boundaries, is typical for radiation porosity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-361

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.A. Vasilyev, N.G. Kuzavkov, O.V. Mishin, A.A. Radionycheva, M.R. Farakshin,Yu.K. Bibilashvili, Yu.A. Ivanov, A.V. Medvedev, N.M. Mitrofanova, A.V. Tselishchev, L.M. Zabudko, V.I. Matveev, Yu.S. Khomyakov, V.A. Cherny, BN-600 reactor core modernization experience and prospects, Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetika 1 (2001) 158−168.

Google Scholar

[2] M.V. Bakanov, V.V. Maltsev, N.N. Oshkanov et al., The main results of structural materials operation in BN-600 reactor cores, Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetika 1 (2011) 177−186.

Google Scholar

[3] V.S. Ageev, Yu.P. Budanov, A.G. Ioltukhovsky et al., Structural materials for Russian fast reactor cores. Current status and prospects, Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetika 2 (2009) 210−218.

Google Scholar

[4] Comprehensive Nuclear Materials, Editor-in-chief: Rudy J. M. Konings, V 1, Elsevier Ltd, Amsterdam, (2012).

Google Scholar

[5] J.O. Stiegler, The effect of thermo-mechanical treatments on void formation in irradiated stainless steel, J. Nucl. Mater. 41 (1971) 341-344.

DOI: 10.1016/0022-3115(71)90171-1

Google Scholar

[6] H.R. Brager, The effects of cold working and pre-irradiation heat treatment on void formation in neutron-irradiated type 316 stainless steel, J. Nucl. Mater. 57 (1975) 103-118.

DOI: 10.1016/0022-3115(75)90184-1

Google Scholar

[7] T.A. Kenfield, W.K. Appleby, H.J. Busboom, W.L. Bell, Swelling of type-316 stainless steel at high fluences in EBR-II, J. Nucl. Mater. 75 (1978) 85-97.

DOI: 10.1016/0022-3115(78)90031-4

Google Scholar

[8] V.A. Krasnoselov, V.I. Prokhorov, A.N. Kolesnikov, Z.A. Ostrovskii, Effect of preliminary heat and mechanical treatment on 0Cr-16Ni-15Mo-ЗNb stainless steel, At Energy 54 (1983) 121-124.

DOI: 10.1007/bf01123292

Google Scholar

[9] K. Uematsu, T. Kodama, U. Ishida, K. Suzuki, M. Koyama, Swelling Behavior of Cold Worked Type 316 Stainless Steel, in Radiation Effects in Breeder Reactor Structural Materials, M. L. Bleiberg and J. W. Bennett, Eds., the Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, 571-589.

Google Scholar

[10] W.K. Appleby, E.E. Bloom, J.E. Flinn, F.A. Garner, Swelling in Neutron-Irradiated 300 Series Stainless Steels, in Radiation Effects in Breeder Reactor Structural Materials, M. L. Bleiberg and J. W. Bennett, Eds., the Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, 509-527.

Google Scholar

[11] A.V. Kozlov, I.A. Portnykh, Conditions for the achievement of the stage of stationary radiation swelling, Phys. Met. Metallogr. 103 (2007) 105-109.

DOI: 10.1134/s0031918x07010139

Google Scholar

[12] H.R. Brager, F.A. Garner, The Influence of Cold Work Level, Solute and Helium Content on the Swelling of Pure, AISI 316 (Fe-17Cr-16.7Ni-2.5Mo), Effects of Radiation on Materials: Eleventh Conference, ASTM STF 782, H. R. Brager and J. S. Perrin, Eds., American Society for Testing and Materials, 1982, 152-165.

DOI: 10.1520/stp34344s

Google Scholar

[13] M. Itoh, S. Onose, S. Yuhara, Void Swelling and Microstructural Change in Neutron Irradiated Type 316 Stainless Steel, Radiation-Induced Changes in Microstructure: 13th International Symposium (Part I), ASTM STP 955, F. A. Garner, N. H. Packan, and A. S. Kumar, Eds., American Society for Testing and Materials, Philadelphia, (1987) 114-126.

DOI: 10.1520/stp33812s

Google Scholar

[14] M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai, Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors, J. Nucl. Mater. 414 (2011) 232-236.

DOI: 10.1016/j.jnucmat.2011.03.049

Google Scholar

[15] V.I. Pastukhov, S.А. Аverin, V.L. Panchenko, I.А. Portnykh, P.D. Freyer, L.A. Giannuzzi, F.А. Garner, Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation, J. Nucl. Mater. 480 (2016) 289-300.

DOI: 10.1016/j.jnucmat.2016.07.059

Google Scholar

[16] A.V. Kozlov, Dependence of the concentration of point defects in the ChS-68 austenitic steel on the rate of their generation and temperature upon neutron irradiation, Phys. Met. Metallogr. 107 (2009) 534-541.

DOI: 10.1134/s0031918x09060027

Google Scholar