[1]
T. Maitland, S. Sitzman, Electron backscatter diffraction (EBSD) technique and materials characterization examples, Springer, Berlin, (2007).
Google Scholar
[2]
B.A. Khorashadizadeh, D. Raabe, S. Zaefferer, G.S. Rohrer, A.D. Rollett, M. Winning, Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing, Adv. Eng. Mater. 13 (2011) 237-244.
DOI: 10.1002/adem.201000259
Google Scholar
[3]
S. Patala, J.K. Mason, K.A. Schuh, Improved representations of misorientation information for grain boundary science and engineering, Prog. Mater. Sci. 57 (2012) 1383–1425.
DOI: 10.1016/j.pmatsci.2012.04.002
Google Scholar
[4]
V.J. Araullo-Peters, B. Gault, S.L. Shrestha, L. Yao, M.P. Moody, S.P. Ringer, J.M. Cairney, Atom probe crystallography: Atomic-scale 3-D orientation mapping, Scripta. Mater. 66 (2012) 907–910.
DOI: 10.1016/j.scriptamat.2012.02.022
Google Scholar
[5]
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM, JOM-US 65 (2013) 1229–1236.
DOI: 10.1007/s11837-013-0678-0
Google Scholar
[6]
М. L. Lobanov, S. V. Danilov, V. I. Pastukhov, S. A. Averin, Y. Y. Khrunyk, A. A. Popov, The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Design. 109 (2016) 251–255.
DOI: 10.1016/j.matdes.2016.06.103
Google Scholar
[7]
A.A. Redikul'tsev, M.L. Lobanov, G.M. Rusakov, L.V. Lobanova, Secondary recrystallization in Fe-3% Si alloy with (110)[001] single-component texture, Phys. Met. Metallogr. 114 (2013) 33–40.
DOI: 10.1134/s0031918x13010110
Google Scholar
[8]
J.W. Martin, R.D. Doherty, B. Cantor, Stability of microstructure in metallic systems, second ed., Cambridge University Press in Cambridge, New York, (1997).
Google Scholar
[9]
G. Gottstein, Physical Foundation of Materials Science, Springer, Berlin, (2004).
Google Scholar
[10]
Rollett A. et al., Recrystallization and Related Annealing Phenomena, second ed.. Elsevier Ltd, (2004).
Google Scholar
[11]
E.A. Little, L.P. Stoler, Microstructural stability of 10-12% Cr ferriticmartensitic steels irradiated in fast reactors, Effects of Irradiation on Materials: Eleventh Conference, ASTN STP 782, Eds. H.R. Brager and J.S. Perrin, Philadelphia (1982) 207–219.
DOI: 10.1520/stp34347s
Google Scholar
[12]
U.K. Bibilashvili, A.G. Ioltukhovsky, Y.I. Kazennov, M.V. Leont ́eva-Smirnova, N.A. Istishov,nV. P. Kondrat ́ev, 12 % chromium steels working characteristics with reference to the conditions of operating the core elements of reactors using lead and lead-bismuth coolants, Proceedings of the International Conference on Heavy Liquid Metal Coolants in Nuclear Technology (HLMC '99), Obninsk (1999) 737–745.
Google Scholar
[13]
A.A. Ivanov, C.V. Shulepin, A.M. Dvoryashin, Y.V. Konobeev, S.N. Ivanov, Y.V. Alekseev, S.I. Porollo, Structure and mechanical properties EP-823 steel, 12Cr-Mo-Nb and development type 12 % Cr containing steels after irradiation in reactor BN-350, in materials 9 Russian Conference from reactor materials science, Dimitrovgrad (2009) 60–74 (in Russian).
DOI: 10.1520/stp11249s
Google Scholar
[14]
D.A. Blokhin, V.M. Chernov, I.A. Blokhin, Nuclear physical properties of ferritic-martensitic steels EK-181 and EP-823 under neutron irradiation in fast reactor Brest-OD-300, Issues of Nuclear Science and Technology 85 (2015) 110–127 (in Russian).
DOI: 10.1134/s2075113311020067
Google Scholar
[15]
M.L. Lobanov, G.M. Rusakov, A.A. Redikultsev, S.V. Belikov, M.S. Karabanalov, E.R. Struina, A.M. Gervas'ev, Research of special boundaries in lath martensite of low-carbon steel by orientation microscopy, Phys. Met. Metallogr. 117 (2016) 254–259.
DOI: 10.1134/s0031918x1603008x
Google Scholar
[16]
A.I. Stepanov, I.N. Ashikhmina, K.I. Sergeeva, S.V. Belikov, S.A. Musikhin, M.S. Karabanalov, A.A. Al-Katawi, Structure and Properties of Low-Alloy Cr–Mo–V Steel after Austenitization in the Intercritical Temperature Range, Steel. 6 (2014) 86–90.
DOI: 10.3103/s0967091214060151
Google Scholar
[17]
M.L. Lobanov, M.D. Borodina, S.V. Danilov, I.Yu. Pyshmintsev, A.O. Struin, Textural Heredity at Phase Transformations in Low-Carbon Low-Alloy Pipe Steel after Controlled Thermomechanical Processing, Steel in Translation 47 (2017) 710–716.
DOI: 10.3103/s0967091217110055
Google Scholar
[18]
Yu.G. Andreev, E.I. Zaykova, M.A. Shtremel, Borders and lineage boundary in batch martensite. Physics of Metals and Metallography. 3 (1990) 161–167. (In Russ.).
Google Scholar
[19]
V.M. Schastlivtsev, L.B. Blindt, L.B. Rodionov, I.D. Yakovleva, The structure of the batch martensite in structural steels, Phys. Met. Metallogr. 66 (1988) 759–769.
Google Scholar
[20]
N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, S. Takaki, Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Materialia 58 (2010) 895-903.
DOI: 10.1016/j.actamat.2009.10.004
Google Scholar
[21]
I.Yu. Pyshmintsev, A.O. Struin, A.M. Gervasyev, M.L. Lobanov, G.M. Rusakov, S.V. Danilov, A.B. Arabey, Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment, Metallurgist 60 (2016) 405–412.
DOI: 10.1007/s11015-016-0306-7
Google Scholar