Numerical and Experimental Investigation of the Heat Treated Steel Part Microstructure and Hardness

Article Preview

Abstract:

The approach for coupled experimental and numerical estimation of the heat treated steel part microstructure and hardness is presented. The method is based on the investigation of the austenite transformation in a steel during continuous cooling, Jominy hardenability test and numerical modeling of a quenching process. The presented approach is verified by estimation of the 20CrMo5 steel gear shaft microstructure and hardness. The estimated results are in good agreement with the experimental ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

346-350

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.M. Farber, O.V. Selivanova, O.N. Polukhina, A.B. Arabey, A.S. Mamatnazarov, Effect of heat treatment on mechanical properties of steels of strength class K65 (X80), Met. Sci. Heat Treat. 56 (2014) 454–456.

DOI: 10.1007/s11041-014-9781-2

Google Scholar

[2] M.A. Ryzhkov, M.V. Maisuradze, Y.V. Yudin, A.V. Khuppeev, K.P.A. Babu, Experience in improving silicon steel component heat treatment quality, Metallurgist. 59 (2015) 401–405.

DOI: 10.1007/s11015-015-0117-2

Google Scholar

[3] Y.A. Samoilovich, Increasing the Service Life of Large Rolling-Mill Rolls by Using the Reserve Hardenability of the Steel, Metallurgist. 59 (2015) 604–612.

DOI: 10.1007/s11015-015-0146-x

Google Scholar

[4] B. Barroqueiro, J. Dias-De-Oliveira, J. Pinho-Da-Cruz, A. Andrade-Campos, Multiscale analysis of heat treatments in steels: theory and practice, Fin. Elem. Anal. Design. 114 (2016) 39–56.

DOI: 10.1016/j.finel.2016.02.004

Google Scholar

[5] X. Jie, J. Hui, Numerical modeling of coupling thermal–metallurgical transformation phenomena of structural steel in the welding process, Adv. Eng. Soft. 115 (2018) 66–74.

DOI: 10.1016/j.advengsoft.2017.08.011

Google Scholar

[6] B.L. Ferguson, Z. Li, A.M. Freborg, Modeling heat treatment of steel parts, Comp. Mater. Sci. 34 (2005) 274–281.

DOI: 10.1016/j.commatsci.2005.02.005

Google Scholar

[7] I. Magnabosco, P. Ferro, A. Tiziani, F.Bonollo, Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis, Comp. Mater. Sci. 35 (2006) 98–106.

DOI: 10.1016/j.commatsci.2005.03.010

Google Scholar

[8] P. Cao, G. Liu, K. Wu, Study of heat treatment parameters for large-scale hydraulic steel gate track, Water Sci. Eng. 6 (2013) 423–432.

Google Scholar

[9] N.S. Bailey, C. Katinas, Y.C. Shin, Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses, J. Mater. Proces. Tech. 247 (2017) 223–233.

DOI: 10.1016/j.jmatprotec.2017.04.020

Google Scholar

[10] D. Chaouch, S. Guessasma, A. Sadok, Finite Element simulation coupled to optimisation stochastic process to assess the effect of heat treatment on the mechanical properties of 42CrMo4 steel, Mater. Design. 34 (2012) 679–684.

DOI: 10.1016/j.matdes.2011.05.026

Google Scholar

[11] K. Gao, X. Qin, Z. Wang, H. Chen, S. Zhu, Y. Liu, Y. Song, Numerical and experimental analysis of 3D spot induction hardening of AISI 1045 steel, J. Mater. Proces. Tech. 214 (2014) 2425–2433.

DOI: 10.1016/j.jmatprotec.2014.05.010

Google Scholar

[12] M.V. Maisuradze, M.A. Ryzhkov, Y.V. Yudin, A.A. Kuklina, Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions, Met. Sci. Heat Treat. 59 (2017) 486–490.

DOI: 10.1007/s11041-017-0176-z

Google Scholar

[13] R.N. Penha, J. Vatavuk, A.A. Couto, S.A.D.L. Pereira, S.A. de Sousa, L.D.C.F. Canale, Effect of chemical banding on the local hardenability in AISI 4340 steel bar, Eng. Fail. Anal. 53 (2015) 59–68.

DOI: 10.1016/j.engfailanal.2015.03.024

Google Scholar

[14] L. Morales-Rivas, H. Roelofs, S. Hasler, C. Garcia-Mateo, F.G. Caballero, Detailed characterization of complex banding in air-cooled bainitic steels, J. Min. Metal. B. 51 (2015) 25–32.

DOI: 10.2298/jmmb140331008m

Google Scholar

[15] Y.V. Yudin, M.V. Maisuradze, M.A. Ryzhkov, P.D. Lebedev, S.A. Musikhin, Simplified simulation method of round steel bar cooling, ISIJ Int. 55 (2015) 1538–1540.

DOI: 10.2355/isijinternational.55.1538

Google Scholar

[16] M.V. Maisuradze, M.A. Ryzhkov, Yu.V. Yudin, Rapid Evaluation of the Cooling Capacity of Quenching Media, Met. Sci. Heat Treat. 57 (2015) 515–518.

DOI: 10.1007/s11041-015-9914-2

Google Scholar

[17] ASM Handbook. Vol. 1. Properties and Selection. Irons, Steels, and High-Performance Alloys. ASM International, (1990).

DOI: 10.31399/asm.hb.v01.9781627081610

Google Scholar

[18] C.R.N. Nunura, C.A. dos Santos, J.A. Spim, Numerical–Experimental correlation of microstructures, cooling rates and mechanical properties of AISI 1045 steel during the Jominy end-quench test, Mater. Design. 76 (2015) 230–243.

DOI: 10.1016/j.matdes.2015.03.031

Google Scholar

[19] M. Pietrzyk, R. Kuziak, Computer aided interpretation of results of the Jominy test, Arch. Civil Mech. Eng. 11 (2011) 707–722.

DOI: 10.1016/s1644-9665(12)60111-3

Google Scholar

[20] A.Z. Yazdi, S.A. Sajjadi, S.M. Zebarjad, S.M.M. Nezhad, Prediction of hardness at different points of Jominy specimen using quench factor analysis method, J. Mater. Proces. Tech. 199 (2008) 124–129.

DOI: 10.1016/j.jmatprotec.2007.08.035

Google Scholar