[1]
V.M. Farber, O.V. Selivanova, O.N. Polukhina, A.B. Arabey, A.S. Mamatnazarov, Effect of heat treatment on mechanical properties of steels of strength class K65 (X80), Met. Sci. Heat Treat. 56 (2014) 454–456.
DOI: 10.1007/s11041-014-9781-2
Google Scholar
[2]
M.A. Ryzhkov, M.V. Maisuradze, Y.V. Yudin, A.V. Khuppeev, K.P.A. Babu, Experience in improving silicon steel component heat treatment quality, Metallurgist. 59 (2015) 401–405.
DOI: 10.1007/s11015-015-0117-2
Google Scholar
[3]
Y.A. Samoilovich, Increasing the Service Life of Large Rolling-Mill Rolls by Using the Reserve Hardenability of the Steel, Metallurgist. 59 (2015) 604–612.
DOI: 10.1007/s11015-015-0146-x
Google Scholar
[4]
B. Barroqueiro, J. Dias-De-Oliveira, J. Pinho-Da-Cruz, A. Andrade-Campos, Multiscale analysis of heat treatments in steels: theory and practice, Fin. Elem. Anal. Design. 114 (2016) 39–56.
DOI: 10.1016/j.finel.2016.02.004
Google Scholar
[5]
X. Jie, J. Hui, Numerical modeling of coupling thermal–metallurgical transformation phenomena of structural steel in the welding process, Adv. Eng. Soft. 115 (2018) 66–74.
DOI: 10.1016/j.advengsoft.2017.08.011
Google Scholar
[6]
B.L. Ferguson, Z. Li, A.M. Freborg, Modeling heat treatment of steel parts, Comp. Mater. Sci. 34 (2005) 274–281.
DOI: 10.1016/j.commatsci.2005.02.005
Google Scholar
[7]
I. Magnabosco, P. Ferro, A. Tiziani, F.Bonollo, Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis, Comp. Mater. Sci. 35 (2006) 98–106.
DOI: 10.1016/j.commatsci.2005.03.010
Google Scholar
[8]
P. Cao, G. Liu, K. Wu, Study of heat treatment parameters for large-scale hydraulic steel gate track, Water Sci. Eng. 6 (2013) 423–432.
Google Scholar
[9]
N.S. Bailey, C. Katinas, Y.C. Shin, Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses, J. Mater. Proces. Tech. 247 (2017) 223–233.
DOI: 10.1016/j.jmatprotec.2017.04.020
Google Scholar
[10]
D. Chaouch, S. Guessasma, A. Sadok, Finite Element simulation coupled to optimisation stochastic process to assess the effect of heat treatment on the mechanical properties of 42CrMo4 steel, Mater. Design. 34 (2012) 679–684.
DOI: 10.1016/j.matdes.2011.05.026
Google Scholar
[11]
K. Gao, X. Qin, Z. Wang, H. Chen, S. Zhu, Y. Liu, Y. Song, Numerical and experimental analysis of 3D spot induction hardening of AISI 1045 steel, J. Mater. Proces. Tech. 214 (2014) 2425–2433.
DOI: 10.1016/j.jmatprotec.2014.05.010
Google Scholar
[12]
M.V. Maisuradze, M.A. Ryzhkov, Y.V. Yudin, A.A. Kuklina, Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions, Met. Sci. Heat Treat. 59 (2017) 486–490.
DOI: 10.1007/s11041-017-0176-z
Google Scholar
[13]
R.N. Penha, J. Vatavuk, A.A. Couto, S.A.D.L. Pereira, S.A. de Sousa, L.D.C.F. Canale, Effect of chemical banding on the local hardenability in AISI 4340 steel bar, Eng. Fail. Anal. 53 (2015) 59–68.
DOI: 10.1016/j.engfailanal.2015.03.024
Google Scholar
[14]
L. Morales-Rivas, H. Roelofs, S. Hasler, C. Garcia-Mateo, F.G. Caballero, Detailed characterization of complex banding in air-cooled bainitic steels, J. Min. Metal. B. 51 (2015) 25–32.
DOI: 10.2298/jmmb140331008m
Google Scholar
[15]
Y.V. Yudin, M.V. Maisuradze, M.A. Ryzhkov, P.D. Lebedev, S.A. Musikhin, Simplified simulation method of round steel bar cooling, ISIJ Int. 55 (2015) 1538–1540.
DOI: 10.2355/isijinternational.55.1538
Google Scholar
[16]
M.V. Maisuradze, M.A. Ryzhkov, Yu.V. Yudin, Rapid Evaluation of the Cooling Capacity of Quenching Media, Met. Sci. Heat Treat. 57 (2015) 515–518.
DOI: 10.1007/s11041-015-9914-2
Google Scholar
[17]
ASM Handbook. Vol. 1. Properties and Selection. Irons, Steels, and High-Performance Alloys. ASM International, (1990).
DOI: 10.31399/asm.hb.v01.9781627081610
Google Scholar
[18]
C.R.N. Nunura, C.A. dos Santos, J.A. Spim, Numerical–Experimental correlation of microstructures, cooling rates and mechanical properties of AISI 1045 steel during the Jominy end-quench test, Mater. Design. 76 (2015) 230–243.
DOI: 10.1016/j.matdes.2015.03.031
Google Scholar
[19]
M. Pietrzyk, R. Kuziak, Computer aided interpretation of results of the Jominy test, Arch. Civil Mech. Eng. 11 (2011) 707–722.
DOI: 10.1016/s1644-9665(12)60111-3
Google Scholar
[20]
A.Z. Yazdi, S.A. Sajjadi, S.M. Zebarjad, S.M.M. Nezhad, Prediction of hardness at different points of Jominy specimen using quench factor analysis method, J. Mater. Proces. Tech. 199 (2008) 124–129.
DOI: 10.1016/j.jmatprotec.2007.08.035
Google Scholar