One-Pot Preparation of Silica Fibers from Rice Straw for Efficiency Removal of Heavy Metal Ions

Article Preview

Abstract:

Silica fibers were prepared from the agricultural waste-rice straw via a slow calcination process. A possible formation mechanism of the obtained silica fiber was explained. The phytoliths/vascular composite fibers of rice straw work as the structural directing templates for the formation of silica fibers under the slow calcination process. Owing to the potassium silicate active site, the separable silica fiber showed great capability in removal of Cu2+, Ni2+, Cd2+ and Pb2+ from aqueous solution with efficiency higher than 99%. Additionally, over 90% of equilibrium adsorption capacity can be reached within 10 minutes, showing the easily accessible paths and active sites for ion transportation and adsorption in the as-prepared fiber. These results of this work are beneficial for scientists pursuing new synthetic route for valuable and widely applicable silica fiber materials from the agricultural waste, also helping to solve disposal of the agricultural waste and pollution problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-197

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Su, Y. Wang, W. Wu, L. Chen, Y. Luo, Chin. Soc. Elec. Eng. 30 (2010) 107-112.

Google Scholar

[2] J. Delgado, M.P. Aznar, J. Corella, Ind. Eng. Chem. Res. 36 (1997) 1535-1543.

Google Scholar

[3] S. Sarker, J. Arauzo, H. Kofoed Nielsen, Ind. Eng. Chem. Res. 99 (2015) 50-61.

Google Scholar

[4] S. Paniagua, M. Otero, R.N. Coimbra, C. Escapa, A.I. Garcia, L.F. Calvo, J. Therm. Anal. Calorim. 121 (2015) 603-611.

DOI: 10.1007/s10973-015-4632-y

Google Scholar

[5] M.M. Hessien, M.M. Rashad, R.R. Zaky, E.A. Abdel-Aal, K.A. El-Barawy, Mater. Sci. Eng. B-Adv. 162 (2009) 14-21.

DOI: 10.1016/j.mseb.2009.01.029

Google Scholar

[6] Y. Kurokochi, M. Sato, Ind. Crop. Prod. 77 (2015) 949-953.

Google Scholar

[7] H.A. Alyoseft, D. Schneider, S. Wassersleben, H. Roggendorf, M. Weiss, A. Eilert, R. Denecke, I. Hartmann, D. Enke, Acs. Sustain. Chem. Eng. 3 (2015) 2012-2021.

DOI: 10.1021/acssuschemeng.5b00275

Google Scholar

[8] C.G. Rocha, D.A.M. Zaia, R.V.D. Alfaya, A.A.D. Alfaya, J. Hazard. Mater. 166 (2009) 383-388.

Google Scholar

[9] H. Chen, F. Wang, C.Y. Zhang, Y.C. Shi, G.Y. Jin, S.L. Yuan, J. Non-Cryst. Solids. 356 (2010) 2781-2785.

Google Scholar

[10] S. Wattanasiriwech, D. Wattanasiriwech, J. Svasti, J. Non-Cryst. Solids. 356 (2010) 1228-1232.

DOI: 10.1016/j.jnoncrysol.2010.04.032

Google Scholar

[11] G.L. Li, Z.S. Zhao, J.Y. Liu, G.B. Jiang, J. Hazard. Mater. 192 (2011) 277-283.

Google Scholar

[12] H. Yang, R. Xu, X.M. Xue, F.T.Li, G.T. Li, J. Hazard. Mater. 152 (2008) 690-698.

Google Scholar

[13] R.K. Dey, F.J.V.E. Oliveira, C. Airoldi, Colloid Surface A. 324 (2008) 41-46.

Google Scholar

[14] A. Sayari, S. Hamoudi, Y. Yang, Chem. Mater. 17 (2005) 212-216.

Google Scholar

[15] V.K. Khalilov, K.F. Klein, A.V. Amosov, P. Soc. Photo-Opt. Ins. 3262 (1998) 166-172.

Google Scholar

[16] S.Z. Li, X.L. Yue, Y.M. Jing, S.S. Bai, Z.F. Dai, Colloid Surface A. 380 (2011) 229-233.

Google Scholar

[17] Y.Y. Zhao, H.Y. Wang, X.F. Lu, X. Li, Y. Yang, C. Wang, Mater. Lett. 62 (2008) 143-146.

Google Scholar

[18] J. Liu, X.D. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, M.L. Gong, Adv. Mater. 10 (1998) 161-165.

Google Scholar

[19] X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science. 276 (1997) 923-926.

Google Scholar

[20] R.I. Nooney, M. Kalyanaraman, G. Kennedy, E.J. Maginn, Langmuir. 17 (2001) 528-533.

Google Scholar

[21] D. Wattanasiriwech, S. Wattanasiriwech, J. Svasti, J. Non-Cryst Solids. 356 (2010) 1228-1232.

DOI: 10.1016/j.jnoncrysol.2010.04.032

Google Scholar

[22] P. Bauer, R. Elbaum, I.M. Weiss, Plant. Sci. 180 (2011) 746-756.

Google Scholar

[23] S.Z. Li, C.L. Shao, Y.C. Liu, S.S. Tang, R.X. Mu, J. Phys. Chem. Solids. 67 (2006) 1869-1872.

Google Scholar

[24] S.Z. Li, Y. Ma, X.L. Yue, Z. Cao, Z.F. Dai, New J. Chem. 33 (2009) 2414-2418.

Google Scholar

[25] S.Z. Li, Y. Ma, X.L. Yue, Z. Cao, S.Q. Liu, Z.F. Dai, J. Disper. Sci. Technol. 31 (2010) 1727-1731.

Google Scholar

[26] X.H. Yang, L. Li, L.B. Yuan, S.Z. Li, S.Z. Luo, Y.X. Liu, L.R. Peng, Opt. Lett. 36 (2011) 4656-4658.

Google Scholar

[27] Z.J. Ma, H.J. Ji, Y. Teng, G.P. Dong, J.J. Zhou, D.Z. Tan, J.R. Qiu, J. Colloid Interf. Sci. 358 (2011) 547-553.

Google Scholar

[28] X.L. Yue, S.S. Feng, S.Z. Li, Y.M. Jing, C.L. Shao, Colloid Surface A. 406 (2012) 44-51.

Google Scholar