A Review on the Modification of Geopolymer with Inorganic Mineral Materials

Article Preview

Abstract:

Geopolymer has been applied in a great many fields such as cement and concrete, fire-proof material, heavy metal immobilization because of its excellent properties. In recent years, the additives such as fibers, carbon nanotube, graphene and inorganic mineral materials has been used to further improve the mechanical strength and other properties. The geopolymer modification with inorganic mineral materials including Ca (Mg)-rich, Si-rich, Al-rich, silicate aluminate and metal oxides mineral materials is reviewed and the action and modification mechanism of these materials in the geopolymer system are nterpreted in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-228

Citation:

Online since:

May 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Davidovits, Geopolymer: inorganic polymeric new materials, J. Therm. Anal. 37 (1991)1633-1656.

Google Scholar

[2] T.S. Lin, D.C. Jia, P.G. He, et al. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites, Mater. Sci. Eng. A. 497(2008)181-185.

DOI: 10.1016/j.msea.2008.06.040

Google Scholar

[3] H.R. Khalid, S.K. Ha, S.M. Park, et al. Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar, Compos. Struct. 134(2015)353-68.

DOI: 10.1016/j.compstruct.2015.08.070

Google Scholar

[4] F. Shaikh, S. Haque. Behavior of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures, International Journal of Concrete Structures and Materials(unpublished).

DOI: 10.1186/s40069-018-0267-2

Google Scholar

[5] H.M. Khater, H.A. Abd el Gawaad. Characterization of alkali activated geopolymer mortar doped with MWCNT, Constr. Build. Mater. 102(2016)329-337.

DOI: 10.1016/j.conbuildmat.2015.10.121

Google Scholar

[6] S. Yan, P.G. He, D.C. Jia, et al. In situ fabrication and characterization of graphene/geopolymer composites, Ceramics International 41(2015)11242-11250.

DOI: 10.1016/j.ceramint.2015.05.075

Google Scholar

[7] S. Yan, P.G. He, D.C. Jia, et al. Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene-geopolymer nanocomposites, Ceramics International 42(2016)752–758.

DOI: 10.1016/j.ceramint.2015.08.176

Google Scholar

[8] J. Temuujin, A. van Riessen, R. Williams. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, Journal of Hazardous Materials 167(2009)82-88.

DOI: 10.1016/j.jhazmat.2008.12.121

Google Scholar

[9] A. Cwirzen, J.L. Provis, V. Penttala, K. et al. The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers, Constr. Build. Mater. 66 (2014) 53-62.

DOI: 10.1016/j.conbuildmat.2014.05.022

Google Scholar

[10] X. Gao, Q.L. Yu, H.J.H. Brouwers, Properties of alkali activated slag–fly ash blends with limestone addition, Cem. Concr. Compos. 59 (2015) 119-128.

DOI: 10.1016/j.cemconcomp.2015.01.007

Google Scholar

[11] J. Qian, M. Song, Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer, Proceedings of 1st International Conference on Calcined Clays for Sustainable Concrete (2015) 235-259.

DOI: 10.1007/978-94-017-9939-3_31

Google Scholar

[12] N.R. Rakhimova, R.Z. Rakhimov, Morozov V.P. et al. Marl-based geopolymers incorporated with limestone: A feasibility study, Journal of Non-Crystalline Solids 492 (2018) 1-10.

DOI: 10.1016/j.jnoncrysol.2018.04.015

Google Scholar

[13] Y. Christina K, P. John L, L. Grant C. et al. Carbonate mineral addition to metakaolin-based geopolymers, Cement and Concrete Composites 30(2008) 979-985.

DOI: 10.1016/j.cemconcomp.2008.07.004

Google Scholar

[14] K.T. Nguyen, T. A. L, J. Lee, et al. Investigation on properties of geopolymer mortar using preheated materials and thermogenetic admixtures, Constr. Build. Mater. 130 (2017) 146-155.

DOI: 10.1016/j.conbuildmat.2016.10.110

Google Scholar

[15] A.F. Abdalqader, F. Jin, A. Al-Tabbaa. Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends, Constr. Build. Mater. 93(2015) 506-513.

DOI: 10.1016/j.conbuildmat.2015.06.015

Google Scholar

[16] J.G. Jang, S.M. Park, G.M. Kim, et al. Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment, Constr. Build. Mater. 151 (2017) 178-185.

DOI: 10.1016/j.conbuildmat.2017.06.088

Google Scholar

[17] Y. Huang, M.F. Han, R.Y. Yi. Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler, Constr. Build. Mater. 33 (2012) 84-89.

DOI: 10.1016/j.conbuildmat.2012.01.014

Google Scholar

[18] W. Zhang, X. Yao, T. Yang. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials, Constr. Build. Mater. 175 (2018) 411-421.

DOI: 10.1016/j.conbuildmat.2018.03.195

Google Scholar

[19] T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design 55(2014)58-65.

DOI: 10.1016/j.matdes.2013.09.049

Google Scholar

[20] S. Riahi, A. Nazari. The effects of nanoparticles on early age compressive strength of ash-based geopolymer, Ceramics International 38(2012)4467-4476.

DOI: 10.1016/j.ceramint.2012.02.021

Google Scholar

[21] A. Nazari, S. Riahi. Predicting the effects of nanoparticles on compressive strength of ash-based geopolymers by gene expression programming, Neural Comput & Applic 23 (2013) 1677-1685.

DOI: 10.1007/s00521-012-1127-7

Google Scholar

[22] M.J.A. Mijarsh, M.A. Megat Johari, Zainal Arifin Ahmad. Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives, Cement & Concrete Composites 60 (2015) 65-81.

DOI: 10.1016/j.cemconcomp.2015.02.007

Google Scholar

[23] X. Ren, L.Y. Zhang, D. Ramey, et al. Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer, J. Mater. Sci. 50(2015) 1370-1381.

DOI: 10.1007/s10853-014-8697-y

Google Scholar

[24] Y Huang, M.F. Han. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, Journal of Hazardous Materials 193 (2011) 90-94.

DOI: 10.1016/j.jhazmat.2011.07.029

Google Scholar

[25] P.·Duxson, J. L. Provis. Understanding the relationship between geopolymer composition microstructure and mechanical properties, Collloid Surf. A. 269(2005)47-58.

Google Scholar

[26] S. Pu, P. Duan, C. Yan, et al. Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste, Advanced Powder Technology 27 (2016) 2470-2477.

DOI: 10.1016/j.apt.2016.09.002

Google Scholar

[27] K. Hemra, P. Aungkavattana. Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer, Advanced Powder Technology 27 (2016) 1021-1026.

DOI: 10.1016/j.apt.2016.04.019

Google Scholar

[28] M.F. Zawraha, R.S. Faragb, M.H. Kohailb. Improvement of physical and mechanical properties of geopolymer through addition of zircon, Materials Chemistry and Physics 217 (2018) 90–97.

DOI: 10.1016/j.matchemphys.2018.06.024

Google Scholar

[29] M.Y. Hu, X.M. Zhu, F.M. Long. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives, Cement& Concrete Composites 31(2009)762-768.

DOI: 10.1016/j.cemconcomp.2009.07.006

Google Scholar

[30] P. Duan, C.J. Yan, W.J. Luo, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste, Constr. Build. Mater. 106 (2016) 115-125.

DOI: 10.1016/j.conbuildmat.2015.12.095

Google Scholar

[31] H. Takedan, S. Hashimoto, S. Honda, et al. The coloring of geopolymers by the addition of copper compounds, Ceramics International 40(2014)6503-6507.

DOI: 10.1016/j.ceramint.2013.11.103

Google Scholar

[32] M. Fallah1, K.J.D. MacKenzie1, J.V. Hanna, et al. Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles, J. Mater. Sci. 50(2015) 7374-7383.

DOI: 10.1007/s10853-015-9295-3

Google Scholar