[1]
J. Davidovits, Geopolymer: inorganic polymeric new materials, J. Therm. Anal. 37 (1991)1633-1656.
Google Scholar
[2]
T.S. Lin, D.C. Jia, P.G. He, et al. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites, Mater. Sci. Eng. A. 497(2008)181-185.
DOI: 10.1016/j.msea.2008.06.040
Google Scholar
[3]
H.R. Khalid, S.K. Ha, S.M. Park, et al. Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar, Compos. Struct. 134(2015)353-68.
DOI: 10.1016/j.compstruct.2015.08.070
Google Scholar
[4]
F. Shaikh, S. Haque. Behavior of Carbon and Basalt Fibres Reinforced Fly Ash Geopolymer at Elevated Temperatures, International Journal of Concrete Structures and Materials(unpublished).
DOI: 10.1186/s40069-018-0267-2
Google Scholar
[5]
H.M. Khater, H.A. Abd el Gawaad. Characterization of alkali activated geopolymer mortar doped with MWCNT, Constr. Build. Mater. 102(2016)329-337.
DOI: 10.1016/j.conbuildmat.2015.10.121
Google Scholar
[6]
S. Yan, P.G. He, D.C. Jia, et al. In situ fabrication and characterization of graphene/geopolymer composites, Ceramics International 41(2015)11242-11250.
DOI: 10.1016/j.ceramint.2015.05.075
Google Scholar
[7]
S. Yan, P.G. He, D.C. Jia, et al. Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene-geopolymer nanocomposites, Ceramics International 42(2016)752–758.
DOI: 10.1016/j.ceramint.2015.08.176
Google Scholar
[8]
J. Temuujin, A. van Riessen, R. Williams. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, Journal of Hazardous Materials 167(2009)82-88.
DOI: 10.1016/j.jhazmat.2008.12.121
Google Scholar
[9]
A. Cwirzen, J.L. Provis, V. Penttala, K. et al. The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers, Constr. Build. Mater. 66 (2014) 53-62.
DOI: 10.1016/j.conbuildmat.2014.05.022
Google Scholar
[10]
X. Gao, Q.L. Yu, H.J.H. Brouwers, Properties of alkali activated slag–fly ash blends with limestone addition, Cem. Concr. Compos. 59 (2015) 119-128.
DOI: 10.1016/j.cemconcomp.2015.01.007
Google Scholar
[11]
J. Qian, M. Song, Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer, Proceedings of 1st International Conference on Calcined Clays for Sustainable Concrete (2015) 235-259.
DOI: 10.1007/978-94-017-9939-3_31
Google Scholar
[12]
N.R. Rakhimova, R.Z. Rakhimov, Morozov V.P. et al. Marl-based geopolymers incorporated with limestone: A feasibility study, Journal of Non-Crystalline Solids 492 (2018) 1-10.
DOI: 10.1016/j.jnoncrysol.2018.04.015
Google Scholar
[13]
Y. Christina K, P. John L, L. Grant C. et al. Carbonate mineral addition to metakaolin-based geopolymers, Cement and Concrete Composites 30(2008) 979-985.
DOI: 10.1016/j.cemconcomp.2008.07.004
Google Scholar
[14]
K.T. Nguyen, T. A. L, J. Lee, et al. Investigation on properties of geopolymer mortar using preheated materials and thermogenetic admixtures, Constr. Build. Mater. 130 (2017) 146-155.
DOI: 10.1016/j.conbuildmat.2016.10.110
Google Scholar
[15]
A.F. Abdalqader, F. Jin, A. Al-Tabbaa. Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends, Constr. Build. Mater. 93(2015) 506-513.
DOI: 10.1016/j.conbuildmat.2015.06.015
Google Scholar
[16]
J.G. Jang, S.M. Park, G.M. Kim, et al. Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment, Constr. Build. Mater. 151 (2017) 178-185.
DOI: 10.1016/j.conbuildmat.2017.06.088
Google Scholar
[17]
Y. Huang, M.F. Han, R.Y. Yi. Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler, Constr. Build. Mater. 33 (2012) 84-89.
DOI: 10.1016/j.conbuildmat.2012.01.014
Google Scholar
[18]
W. Zhang, X. Yao, T. Yang. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials, Constr. Build. Mater. 175 (2018) 411-421.
DOI: 10.1016/j.conbuildmat.2018.03.195
Google Scholar
[19]
T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design 55(2014)58-65.
DOI: 10.1016/j.matdes.2013.09.049
Google Scholar
[20]
S. Riahi, A. Nazari. The effects of nanoparticles on early age compressive strength of ash-based geopolymer, Ceramics International 38(2012)4467-4476.
DOI: 10.1016/j.ceramint.2012.02.021
Google Scholar
[21]
A. Nazari, S. Riahi. Predicting the effects of nanoparticles on compressive strength of ash-based geopolymers by gene expression programming, Neural Comput & Applic 23 (2013) 1677-1685.
DOI: 10.1007/s00521-012-1127-7
Google Scholar
[22]
M.J.A. Mijarsh, M.A. Megat Johari, Zainal Arifin Ahmad. Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives, Cement & Concrete Composites 60 (2015) 65-81.
DOI: 10.1016/j.cemconcomp.2015.02.007
Google Scholar
[23]
X. Ren, L.Y. Zhang, D. Ramey, et al. Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer, J. Mater. Sci. 50(2015) 1370-1381.
DOI: 10.1007/s10853-014-8697-y
Google Scholar
[24]
Y Huang, M.F. Han. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, Journal of Hazardous Materials 193 (2011) 90-94.
DOI: 10.1016/j.jhazmat.2011.07.029
Google Scholar
[25]
P.·Duxson, J. L. Provis. Understanding the relationship between geopolymer composition microstructure and mechanical properties, Collloid Surf. A. 269(2005)47-58.
Google Scholar
[26]
S. Pu, P. Duan, C. Yan, et al. Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste, Advanced Powder Technology 27 (2016) 2470-2477.
DOI: 10.1016/j.apt.2016.09.002
Google Scholar
[27]
K. Hemra, P. Aungkavattana. Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer, Advanced Powder Technology 27 (2016) 1021-1026.
DOI: 10.1016/j.apt.2016.04.019
Google Scholar
[28]
M.F. Zawraha, R.S. Faragb, M.H. Kohailb. Improvement of physical and mechanical properties of geopolymer through addition of zircon, Materials Chemistry and Physics 217 (2018) 90–97.
DOI: 10.1016/j.matchemphys.2018.06.024
Google Scholar
[29]
M.Y. Hu, X.M. Zhu, F.M. Long. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives, Cement& Concrete Composites 31(2009)762-768.
DOI: 10.1016/j.cemconcomp.2009.07.006
Google Scholar
[30]
P. Duan, C.J. Yan, W.J. Luo, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste, Constr. Build. Mater. 106 (2016) 115-125.
DOI: 10.1016/j.conbuildmat.2015.12.095
Google Scholar
[31]
H. Takedan, S. Hashimoto, S. Honda, et al. The coloring of geopolymers by the addition of copper compounds, Ceramics International 40(2014)6503-6507.
DOI: 10.1016/j.ceramint.2013.11.103
Google Scholar
[32]
M. Fallah1, K.J.D. MacKenzie1, J.V. Hanna, et al. Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles, J. Mater. Sci. 50(2015) 7374-7383.
DOI: 10.1007/s10853-015-9295-3
Google Scholar