Morphology and Properties of Poly(Lactic Acid)/Ethylene-Octene Copolymer Nanocomposites

Article Preview

Abstract:

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35% octadecylamine (Clay-APTSO) on morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC)/Clay-APTSO composites were investigated. The blends of PLA/EOC with and without Clay-APTSO were prepared by melt mixing in an internal mixer. Scanning electron microscopy analysis observed the morphology of PLA/EOC blends demonstrated a phase separation of minor phase and matrix phase. The addition of Clay-APTSO in PLA/EOC blends showed significant decreased in droplet size of dispersed EOC phase, thus, Clay-APTSO acted as an effective compatibilizer in the PLA/EOC blends. The results of tensile properties found the decrease of Young’s modulus of PLA when added EOC due to the low modulus and flexibility of EOC. While the incorporation of Clay-APTSO increased significantly Young’s modulus of PLA/EOC blends at low EOC and Clay-APTSO content. The strain at break of the blends increased with the increase of EOC loading, this indicated the presence of EOC enhanced the elongation at break of PLA, while the addition Clay-APTSO reduced the strain at break of PLA/EOC blends. The tensile strength of all blend compositions improved when added Clay-APTSO and the tensile strength showed the highest value at 3 phr of Clay-APTSO. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-APTSO in the blends could improve the thermal stability of the PLA/EOC blends.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Nagarajan, A.K. Mohanty, M. Misra, Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance, ACS Sustainable Chem. Eng. 4 (2016) 2899-2916.

DOI: 10.1021/acssuschemeng.6b00321

Google Scholar

[2] C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, Z. Peng, Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber, Mater. Des. 45 (2013) 198-205.

DOI: 10.1016/j.matdes.2012.09.024

Google Scholar

[3] Y. Wang, K. Chen, C. Xu, Y. Chen, Supertoughened biobased poly(lactic acid)−epoxidized natural rubber thermoplastic vulcanizates: Fabrication, co-continuous phase structure, tnterfacial in situ compatibilization, and toughening mechanism, J. Phys. Chem. B 119 (2015) 12138-12146.

DOI: 10.1021/acs.jpcb.5b06244

Google Scholar

[4] V.H. Sangeetha, T.O. Varghese, S.K. Nayak, Toughening of polylactic acid using styrene ethylene butylene styrene: Mechanical, thermal, and morphological studies, Polym. Eng. Sci. 56 (2016) 669-675.

DOI: 10.1002/pen.24293

Google Scholar

[5] Y. Chen, D. Yuan, C. Xu, Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase, ACS Appl. Mater. Interfaces 6 (2014) 3811-3816.

DOI: 10.1021/am5004766

Google Scholar

[6] S.W. Lim, M.C. Choi, J.H. Jeong, E.Y. Park, C.S. Ha, Toughening poly(lactic acid) (PLA) through in situ reactive blending with liquid polybutadiene rubber (LPB), Compos. Interfaces, 23 (2016) 807-818.

DOI: 10.1080/09276440.2016.1175168

Google Scholar

[7] S.Y. Gua, K. Zhang, J. Ren, H. Zhan, Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends, Carbohydr. Polym. 74 (2008) 79-85.

DOI: 10.1016/j.carbpol.2008.01.017

Google Scholar

[8] E.J. Dil, P.J. Carreau, B.D. Favis, Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer 68 (2015) 202-212.

DOI: 10.1016/j.polymer.2015.05.012

Google Scholar

[9] M. Akramia, I. Ghasemi, H. Azizi, M. Karrabi, M. Seyedabadi, A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends, Carbohydr. Polym. 144 (2016) 254-262.

DOI: 10.1016/j.carbpol.2016.02.035

Google Scholar

[10] V. Jašo, M. Cvetinov, S. Rakić, Z.S. Petrović, Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends, J. Appl. Polym. Sci. 131 (2014) 41104.

DOI: 10.1002/app.41104

Google Scholar

[11] N. Bitinis, R. Verdejo, E.M. Maya, E. Espuche, P. Cassagnau, M.A. Lopez-Manchado, Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites, Compos. Sci. Technol. 72 (2012) 305-313.

DOI: 10.1016/j.compscitech.2011.11.018

Google Scholar

[12] T. Nazari, H. Garmabi, A. Arefazar, Effect of clay modification on the morphology and the mechanical/physical properties of ABS/PMMA blends, J. Appl. Polym. Sci. 126 (2012) 1637-1649.

DOI: 10.1002/app.36953

Google Scholar

[13] T. Nazari, H. Garmabi, Effect of organoclays on the rheological and morphological properties of poly(acrylonitrilebutadiene-styrene)/poly(methyl methacrylate)/clay nanocomposites, Polym. Compos. 33 (2012) 1893-1902.

DOI: 10.1002/pc.22329

Google Scholar

[14] M. Yousfi, J. Soulestin, B. Vergnes, M. F. Lacrampe, P. Krawczak, Morphology and mechanical properties of PET/PE blends compatibilized by nanoclays: Effect of thermal stability of nanofiller organic modifier, J. Appl. Polym. Sci. 128 (2013) 2766-2778.

DOI: 10.1002/app.38450

Google Scholar

[15] M. Bijarimi, S. Ahmad, R. Rasid, Mechanical, thermal and morphological properties of poly(lactic acid)/natural rubber nanocomposites, J. Reinf. Plast. Compos. 32 (2013) 1656-1667.

DOI: 10.1177/0731684413496487

Google Scholar

[16] M. Nofar, M.C. Heuzey, P.J. Carreau, M.R. Kamal, Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow, Polymer 98 (2016) 353-364.

DOI: 10.1016/j.polymer.2016.06.044

Google Scholar