First Principles Study of the Influence of the Local Steric Environment on the Incorporation and Migration of NO in a-SiO2

Article Preview

Abstract:

The NO anneal has been shown to effectively remove 99% of defects in SiC based devices. However, the details of interactions of NO molecules with amorphous (a)-SiO2 and SiC/SiO2 interface are still poorly understood. We use DFT simulations to investigate the NO incorporation energies in a-SiO2, and how these are affected by the steric environment. The results explain the ease with which NO molecules incorporate into a-SiO2 and give an insight into the diffusion paths they take during annealing. We highlight the importance of exhaustive sampling for exploring NO diffusion pathways.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-198

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. Van Ginhoven, H. Jónsson, and L. R. Corrales, Silica glass structure generation for ab initio calculations using small samples of amorphous silica,, Phys. Rev. B, vol. 71, no. 2, p.024208, (2005).

DOI: 10.1103/physrevb.71.024208

Google Scholar

[2] A. Roder, W. Kob, and K. Binder, Structure and dynamics of amorphous silica surfaces,, J. Chem. Phys., vol. 114, no. 17, p.7602–7614, (2001).

DOI: 10.1063/1.1360257

Google Scholar

[3] G. Pacchioni, L. Skuja, and D. L. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology. Springer Netherlands, (2012).

DOI: 10.1007/978-94-010-0944-7

Google Scholar

[4] T. Bakos, S. N. Rashkeev, and S. T. Pantelides, Reactions and Diffusion of Water and Oxygen Molecules in Amorphous,, Phys. Rev. Lett., vol. 88, no. 5, p.055508, (2002).

Google Scholar

[5] W. Orellana, Energetic of nitrogen incorporation reactions in SiO2,, Appl. Phys. Lett., vol. 84, no. 6, p.933–935, (2004).

DOI: 10.1063/1.1646466

Google Scholar

[6] M. S. Munde, D. Z. Gao, and A. L. Shluger, Diffusion and aggregation of oxygen vacancies in amorphous silica,, J. Phys. Condens. Matter, vol. 29, no. 24, (2017).

DOI: 10.1088/1361-648x/aa6f9a

Google Scholar

[7] S. Plimpton, Fast Parallel Algorithms for Short – Range Molecular Dynamics,, J. Comput. Phys., vol. 117, p.1–19, (1995).

Google Scholar

[8] A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons,, J. Phys. Chem. A, vol. 105, no. 41, p.9396–9409, (2001).

DOI: 10.1021/jp004368u

Google Scholar

[9] M. Guidon, J. Hutter, and J. VandeVondele, Robust Periodic Hartree- Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets,, J. Chem. Theory Comput., vol. 5, no. 11, p.3010–3021, (2009).

DOI: 10.1021/ct900494g

Google Scholar

[10] S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials,, Phys. Rev. B, vol. 54, no. 3, p.1703–1710, Jul. (1996).

DOI: 10.1103/physrevb.54.1703

Google Scholar

[11] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. Vandevondele, Cp2k: Atomistic simulations of condensed matter systems,, Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 4, no. 1, (2014).

DOI: 10.1002/wcms.1159

Google Scholar

[12] M. Guidon, J. Hutter, and J. VandeVondele, Auxiliary Density Matrix Methods for Hartree{\textminus}Fock Exchange Calculations,, vol. 6, no. 8, p.2348–2364, (2010).

DOI: 10.1021/ct1002225

Google Scholar

[13] M. Guidon, J. Hutter, and J. Vandevondele, Auxiliary density matrix methods for Hartree-Fock exchange calculations,, J. Chem. Theory Comput., vol. 6, no. 8, p.2348–2364, (2010).

DOI: 10.1021/ct1002225

Google Scholar

[14] K. Vollmayr, W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study,, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 54, no. 22, p.15808–15827, (1996).

DOI: 10.1103/physrevb.54.15808

Google Scholar