Theory of Carbon-Vacancy Diffusion at the SiO2/4H-SiC Interface

Article Preview

Abstract:

Experimental data indicate that carbon vacancies incorporated in active regions of SiC devices are important electrical defects, responsible for device limiting effects such as carrier lifetime reduction. For field-effect transistors that include a 4H-SiC/SiO2 interface, such as at the gate, the oxidation pro- cess is understood to introduce native defects to the SiC, including injection of carbon self-interstitials and vacancies, that diffuse into the active layer and interact with other defects and impurities. It is therefore important to understand the migration behaviour of primary native defects such as VC in the vicinity of 4H-SiC/SiO2 interfaces. We report here the results of a density-functional theory investi- gation into the diffusion of the carbon vacancy in such a region. We conclude that the migration of VC is significantly hindered in the immediate vicinity of the interface, with the energy of diffusion barrier being approximately 15% greater than the corresponding diffusion in bulk 4H-SiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-207

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kawahara, X. T. Trinh, N. T. Son, E. Janzén, J. Suda, and T. Kimoto, Appl. Phys. Lett., vol. 102, no. 11, p.112106, (2013).

DOI: 10.1063/1.4796141

Google Scholar

[2] T. Kimoto, K. Danno, and J. Suda, Phys. Status Solidi B, vol. 245, no. 7, pp.1327-1336, (2008).

Google Scholar

[3] P. R. Briddon and R. Jones, Phys. Status Solidi B, vol. 217, no. 1, pp.131-171, (2000).

Google Scholar

[4] C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B, vol. 58, no. 7, pp.3641-3662, (1998).

Google Scholar

[5] J. P. Goss, M. J. Shaw, and P. R. Briddon, in Theory of Defects in Semiconductors, ser. Topics in Applied Physics, D. A. Drabold and S. K. Estreicher, Eds., Berlin/Heidelberg: Springer, 2007, vol. 104, pp.69-94.

Google Scholar

[6] M. J. Rayson and P. R. Briddon, Phys. Rev. B, vol. 80, no. 20, p.205104, (2009).

Google Scholar

[7] H. J. Monkhorst and J. D. Pack, Phys. Rev. B, vol. 13, no. 12, pp.5188-5192, (1976).

Google Scholar

[8] G. L. Zhao and D. Bagayoko, New J. Phys., vol. 2, no. 1, p.16, (2000).

Google Scholar

[9] L. Gordon, A. Janotti, and C. G. Van De Walle, Phys. Rev. B, vol. 92, no. 4, p.045208, (2015).

Google Scholar

[10] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys., vol. 113, no. 22, pp.9901-9904, (2000).

Google Scholar

[11] G. Henkelman and H. Jónsson, J. Chem. Phys., vol. 113, no. 22, pp.9978-9985, (2000).

Google Scholar

[12] F. Devynck, F. Giustino, P. Broqvist, and A. Pasquarello, Phys. Rev. B, vol. 76, no. 7, p.075351, (2007).

Google Scholar

[13] P. Deák, J. M. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim, J. Phys. D, vol. 40, no. 20, pp.6242-6253, (2007).

DOI: 10.1088/0022-3727/40/20/s09

Google Scholar

[14] T. Hornos, A. Gali, and B. G. Svensson, Mater. Sci. Forum, vol. 679-680, pp.261-264, (2011).

Google Scholar

[15] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett., vol. 93, no. 2, p.022108, (2008).

DOI: 10.1063/1.2949081

Google Scholar