Cryogenic Characterization of NH3 Post Oxidation Annealed 4H-SiC Trench MOSFETs

Article Preview

Abstract:

We employed the thermal dielectric relaxation current method (TDRC) for the cryogenic characterization of ammonia (NH3) post oxidation annealed 4H silicon carbide (4H-SiC) trench MOSFETs. We studied differences and similarities between annealing in nitric oxide (NO) and NH3. In NO and NH3 annealed trench MOSFETs, the same type of traps was found near the conduction band edge of 4H-SiC. The TDRC-signal consists of two peaks caused by interface states with a thermal emission barrier of 0.13 eV and near interface traps (NITs) with an emission barrier of approximately 0.3 eV. Significantly more interface traps close to the conduction band edge were found for the NH3 annealed devices compared to the NO annealed ones. Our TDRC results indicate that NH3 post oxidation anneal (POA) affects trap levels in a different way than NO POA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-179

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Pippel, J. Woltersdorf, H. Ö. Ólafsson, and E. Ö. Sveinbjörnsson: JAP 97.3 (2005), p.034302.

Google Scholar

[2] V. V. Afanas'ev, A. Stesmans, F. Ciobanu, G. Pensl, K. Y. Cheong, and S. Dimitrijev: APL 82.4 (2003), pp.568-570.

Google Scholar

[3] H. Yoshioka, T. Nakamura, and T. Kimoto: JAP 112.2 (2012), p.024520.

Google Scholar

[4] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour: IEEE EDL 22.4 (2001), pp.176-178.

DOI: 10.1109/55.915604

Google Scholar

[5] S. Dhar, L. C. Feldman, S. Wang, T. Isaacs-Smith, and J. R. Williams: JAP 98.1 (2005), p.014902.

Google Scholar

[6] N. Soejima, T. Kimura, T. Ishikawa, and T. Sugiyama: Mater. Sci. Forum 740-742 (2013), pp.723-726.

Google Scholar

[7] I. Pintilie, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L. S. Løvlie, and B. G. Svensson: Mater. Sci. Forum 679-680 (2011), pp.346-349.

DOI: 10.4028/www.scientific.net/msf.679-680.346

Google Scholar

[8] M. Krieger, S. Beljakowa, B. Zippelius, V. V. Afanas'ev, A. J. Bauer, Y. Nanen, T. Kimoto, and G. Pensl: Mater. Sci. Forum 645-648 (2010), pp.463-468.

DOI: 10.4028/www.scientific.net/msf.645-648.463

Google Scholar

[9] T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H.Ö. Ólafsson, and E.Ö. Sveinbjörnsson: Solid-State Electronics 49.4 (2005), pp.545-553.[10] K. McDonald, L. C. Feldman, R. A. Weller, G. Y. Chung, C. C. Tin, and J. R. Williams: JAP 93.4 (2003), pp.2257-2261.

DOI: 10.1016/j.sse.2004.12.006

Google Scholar

[11] P. T. Lai, J. P. Xu, C. L. Chan, and Y. C. Cheng: Electron Devices Meeting, Proceedings, 1999 Hong Kong (1999), pp.46-49.

Google Scholar

[12] J. S. Uranwala, J. G. Simmons, and H. A. Mar: Solid-State Electronics 19 (1976), pp.375-380.

Google Scholar

[13] G. Ghibaudo: IEEE Electronics Letters 24, No. 9 (1988), pp.543-545.

Google Scholar

[14] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz: physica status solidi (a) 162.1 (1997), pp.321-337.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[15] J. Berens. Cryogenic characterization of 4H-SiC high power MOSFET. Master Thesis. RWTH Aachen University, (2018).

Google Scholar

[16] G. Rescher, G. Pobegen, T. Aichinger, T. Grasser: Mater. Sci. Forum 897 (2017), pp.143-146.

Google Scholar