Study on Compression-Torsion Deformation Behavior and Recrystallization Grain Size of Mg13Gd4Y2Zn0.5Zr Alloy

Article Preview

Abstract:

In this paper, the compression-torsion composite deformation of homogenized Mg-13Gd-4Y-2Zn-0.5Zr alloy with strain rate of 0.001 s-1-0.5 s-1 during the temperature interval of 350 °C-480 °C was studied by the torsional test using the equipment of Gleeble3500 unique to North University of Chain. The effects of temperature and strain rate on the flow behavior of the alloy during compression-torsion deformation were investigated. And the compression-torsion constitutive equation of the high temperature flow stress of the alloy was constructed by introducing the temperature compensation factor Z, providing a theoretical basis for subsequent finite element analysis. The results showed that the flow stress increased with the increase of strain when the flow curves of the alloy were 350 °C and 400 °C. When the deformation temperatures were 450 °C and 480 °C, the flow stress was a typical recrystallization type. The influence of temperature and strain rate on dynamic recrystallization behavior was investigated by OM observation. The results showed that the number and size of recrystallized grains increased with the increase of temperature at the same strain rate, and the number and size of recrystallized grains increased with the decrease of strain rate at the same temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-182

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Tan, J. Li, Z.J. Guan, J.B. Yang, J.X. Shu, The identification of dynamic recrystallization and constitutive modeling during hot deformation of Ti55511 titanium alloy, Mater. Des. 84 (2015) 204-211.

DOI: 10.1016/j.matdes.2015.06.093

Google Scholar

[2] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282-6293.

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[3] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy, Acta Mater. 59 (2011) 3646-3658.

DOI: 10.1016/j.actamat.2011.02.038

Google Scholar

[4] S. Huang, J.F. Wang, F. Hou, X.H. Huang, F.S. Pan, Effect of Gd and Y contents on the microstructural evolution of long period stacking ordered phase and the corresponding mechanical properties in Mg-Gd-Y-Zn-Mn alloys, Mater. Sci. Eng. A. 612 (2014) 363-370.

DOI: 10.1016/j.msea.2014.06.063

Google Scholar

[5] M. Martinez-Maldonado, D.A. Kumjian, Highly ordered 10H-type long-period stacking order phase in a Mg–Zn–Y ternary alloy, Scr. Mater. 78-79 (2014) 13-16.

DOI: 10.1016/j.scriptamat.2014.01.013

Google Scholar

[6] G. Garces, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, P. Adeva, Plasticity analysis by synchrotron radiation in a Mg97Y2Zn1 alloy with bimodal grain structure and containing LPSO phase, Acta Mater. 94 (2015) 78-86.

DOI: 10.1016/j.actamat.2015.04.048

Google Scholar

[7] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scr. Mater. 53 (2005) 799-803.

DOI: 10.1016/j.scriptamat.2005.06.006

Google Scholar

[8] J.F. Nie, Y.M. Zhu, A.J. Morton, On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in Mg-Y-Zn Alloys, Metall. Mater. Trans. A. 45 (2014) 3338-3348.

DOI: 10.1007/s11661-014-2301-6

Google Scholar

[9] Y.X. Li, G.Z. Zhu, D. Qiu, D.D. Yin, Y.H. Rong, M.X. Zhang, The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys, J. Alloys Compd. 660 (2016) 252-257.

DOI: 10.1016/j.jallcom.2015.11.098

Google Scholar

[10] J.M. Yu, Z.M. Zhang, Q. Wang, X.Y. Yin, J.Y Cui, H.N. Qi, Dynamic recrystallization behavior of magnesium alloys with LPSO during hot deformation, J. Alloys Compd. ,704 (2017) 382-389.

DOI: 10.1016/j.jallcom.2017.01.321

Google Scholar

[11] Y.X. Li, G.Z. Zhu, D. Qiu, D.D. Yin, Y.H. Rong, M.X. Zhang, The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys, J. Alloys Compd. 660 (2016) 252-257.

DOI: 10.1016/j.jallcom.2015.11.098

Google Scholar

[12] J.M. Yu, Z.M. Zhang, P. Xu, B.B. Dong, Q. Wang, M. Meng, H.Y. Hao, X.B. Li, X.Y. Yin, Dynamic recrystallization behavior of Gd-containing Mg alloy under torsion deformation, J. Alloys Compd. 787 (2019) 239-253.

DOI: 10.1016/j.jallcom.2019.01.330

Google Scholar

[13] M. Nishida, Y. Kawamura, T. Yamamuro, Formation process of unique microstructure in rapidly solidified Mg97Zn1Y2 alloy, Mater. Sci. Eng. A. 375-377 (2004) 1217-1223.

DOI: 10.1016/j.msea.2003.10.145

Google Scholar

[14] Q. Chen, D. Shu, Z Zhao, Z.X. Zhao, Y.B. Wang, B.G. Yuan, Microstructure development and tensile mechanical properties of Mg-Zn-RE-Zr magnesium alloy, Mater. Des. 40 (2012) 488-496.

DOI: 10.1016/j.matdes.2012.03.059

Google Scholar

[15] F.Z. Hassani, M. Ketabchi, M.T. Hassani, Effect of twins and non-basal planes activated by equal channel angular rolling process on properties of AZ31 magnesium alloy, J. Mater. Sci. 46 (2011) 7689-7695.

DOI: 10.1007/s10853-011-5748-5

Google Scholar

[16] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions, J. Mater Process Tech. 141 (2003) 207-212.

DOI: 10.1016/s0924-0136(02)01106-8

Google Scholar

[17] B. Inem. Dynamic recrystallization in a thermomechanically processed metal matrix composite, Mater. Sci. Eng. A. 197(1995) 91-95.

DOI: 10.1016/0921-5093(94)09753-4

Google Scholar

[18] D.X. Zhang, Z. Tan, Q.H. Huo, Z.Y. Xiao, Z.W. Fang, X.Y. Yang, Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases, Mater. Sci. Eng. A. 715 (2018) 389-403.

DOI: 10.1016/j.msea.2017.12.103

Google Scholar

[19] B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, A.T. Tang, The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg–2.0Zn–0.3Zr–5.8Y alloy, Mater. Sci. Eng. A. 599 (2014) 150-159.

DOI: 10.1016/j.msea.2014.01.079

Google Scholar

[20] T. Sakai, X. Yang, H. Miura. Dynamic evolution of fine grained structure and superplasticity of 7075 aluminum alloy, Mater. Sci. Eng. A. 234 (1997) 857-860.

DOI: 10.1016/s0921-5093(97)00398-5

Google Scholar

[21] B.J. Lv, J. Peng, Y. Peng, A.T. Tang, F.S. Pan. The effect of LPSO phase on hot deformation behavior and dynamic recrystallization evolution of Mg–2.0Zn–0.3Zr–5.8Y alloy, Mater. Sci. Eng. A. 579 (2013) 209-216.

DOI: 10.1016/j.msea.2013.05.022

Google Scholar

[22] X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao, Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature, Mater. Des. 50 (2013) 198-206.

DOI: 10.1016/j.matdes.2013.03.009

Google Scholar

[23] J.H. Sung, J.H. Kim, R.H. Wagoner, A plastic constitutive equation incorporating strain, strain-rate, and temperature, Int J. Plast. 26 (2010) 1746-1771.

DOI: 10.1016/j.ijplas.2010.02.005

Google Scholar

[24] Y.C. Lin, X.m. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des. 32 (2011) 1733-1759.

DOI: 10.1016/j.matdes.2010.11.048

Google Scholar

[25] K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, Y. Kawamura, Orientation dependence of the deformation kink band formation behavior in Zn single crystal, Int J. Plast. 77 (2016) 174-191.

DOI: 10.1016/j.ijplas.2015.10.005

Google Scholar

[26] L. Wang, J. Sabisch, E.T. Lilleodden. Kink formation and concomitant twin nucleation in Mg-Y, Scr. Mater. 111 (2016) 68-71.

DOI: 10.1016/j.scriptamat.2015.08.016

Google Scholar