[1]
I.S. Batra, G.K. Dey, U.D. Kulkarni, S. Banerjee, On the sequence of clustering and ordering in a meltspun Cu-Ti alloy, Mater. Sci. Eng. A 360 (2003) 220-227.
DOI: 10.1016/s0921-5093(03)00440-4
Google Scholar
[2]
S. Semboshi, T. Takasugi, Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen atmosphere, J. Alloy. Compd. 580 (2013) S397–S400.
DOI: 10.1016/j.jallcom.2013.03.216
Google Scholar
[3]
T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, E. Okunishi, Aging behavior of Cu–Ti–Al alloy observed by transmission electron microscopy, J. Mater. Sci. 43 (2008) 3761–3768.
DOI: 10.1007/s10853-007-2233-2
Google Scholar
[4]
I.S. Batra, A. Laik, G.B. Kale, G.K. Dey, U.D. Kulkarni, Microstructure and properties of a Cu–Ti–Co alloy, Mater. Sci. Eng. A 402 (2005) 118–125.
DOI: 10.1016/j.msea.2005.04.015
Google Scholar
[5]
P.J. Rioja, D.E. Laughlin, The sequence of precipitation in Cu-2 wt % Be alloys, Acta Metall. 28 (1980) 1301–1313.
DOI: 10.1016/0001-6160(80)90086-3
Google Scholar
[6]
S. Semboshi, Effect of aging in hydrogen atmosphere on electrical conductivity of Cu–3 at. % Ti alloy, J Mater. Res. 23 (2008) 473-477.
DOI: 10.1557/jmr.2008.0050
Google Scholar
[7]
R. Mar.kandeya, S. Nagarjuna, D.S. Sarma, Precipitation hardening of Cu–Ti–Zr alloys, Mater. Sci. Technol. 20 (2004) 849-858.
DOI: 10.1179/026708304225017409
Google Scholar
[8]
S. Semboshi, T. Al-Kassab, R. Gemma, R. Kirchheim, Microstructural evolution of Cu-1 at % Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity, Ultramicroscopy 109 (2009) 593–598.
DOI: 10.1016/j.ultramic.2008.10.015
Google Scholar
[9]
A. Kamegawa, T. Iwaki, M. Okada, Simultaneous enhancement of electrical conductivities and mechanical properties in Cu-Ti Alloy by hydrogenation process, Mater. Sci. Forum 654-656 (2010) 1319-1322.
DOI: 10.4028/www.scientific.net/msf.654-656.1319
Google Scholar
[10]
S. Nagarjuna, M. Srinvivas, K. Balasubraman, D.S. Sarma, On the variation of mechanical properties with solute content in Cu–Ti alloys, Mater. Sci. Eng. A 259 (1999) 34-42.
DOI: 10.1016/s0921-5093(98)00882-x
Google Scholar
[11]
W.A. Soffa, D.E. Laughlin, High-strength age hardening copper–titanium alloys, Prog. Mater. Sci. 49 (2004) 347-366.
DOI: 10.1016/s0079-6425(03)00029-x
Google Scholar
[12]
S. Nagarjuna, M. Srinvivas, Elevated temperature tensile behavior of a Cu–4.5Ti alloy, Mater. Sci. Eng. A 406 (2005) 186-194.
Google Scholar
[13]
A. Datta, W.A. Soffa, The structure and properties of age hardened Cu–Ti alloys, Acta Metall. 24 (1976) 987–1001.
DOI: 10.1016/0001-6160(76)90129-2
Google Scholar
[14]
D.E. Laughlin, J.W. Cahn, Spinodal decomposition in aged hardening copper–titanium alloys, Acta Metall. 23 (1975) 329–339.
DOI: 10.1016/0001-6160(75)90125-x
Google Scholar
[15]
M.J. Richards, J.W. Cahn, Pairwise interactions and the ground state of ordered binary alloy, Acta Metall. 9 (1971) 1263–1277.
DOI: 10.1016/0001-6160(71)90060-5
Google Scholar
[16]
L.A. Nesbit, D.E. Laughlin, Ordering in an off-stoichiometric Ni–Mo alloy, Acta Metall. 26 (1978) 815–825.
DOI: 10.1016/0001-6160(78)90031-7
Google Scholar
[17]
W.A. Soffa, D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order–disorder transformations, Acta Metall. 37 (1989) 3019–3028.
DOI: 10.1016/0001-6160(89)90338-6
Google Scholar
[18]
C. Borchers, Catastrophic nucleation during decomposition of Cu-0.9 at. % Ti, Phil. Mag. A 79 (1999) 537-547.
DOI: 10.1080/01418619908210315
Google Scholar
[19]
R. Kinghts, P. Wilkes, The precipitation of titanium in copper and copper-nickel base alloys, Acta Metall. 21 (1973) 1503-1514.
DOI: 10.1016/0001-6160(73)90180-6
Google Scholar
[20]
A.J. Ardell, R.B. Nicholson, J.D. Eshelby, On the modulated structure of aged Ni-Al alloys: with an appendix on the elastic interaction between inclusions by J. D. Eshelby, Acta Metall. 14 (1966) 1295-1309.
DOI: 10.1016/0001-6160(66)90247-1
Google Scholar
[21]
C.G. Woychik, R.J. Rioja, T.B. Massalski, D.E. Laughlin, Decomposition of Rapidly Solidified Cu-Ti Solid Solutions, Metall. Trans. A 16 (1985) 1353-1354.
DOI: 10.1007/bf02670339
Google Scholar
[22]
D. de Fontaine, K-Space Symmetry Rules for Order-Disorder Reactions, Acta Metall. 23 (1975) 553-571.
DOI: 10.1016/0001-6160(75)90096-6
Google Scholar
[23]
D.H. Ben Israel, M.E. Fine, Precipitation studies in Ni-10 at. % Ti, Acta Metall. 1l (1963) 1051-1059.
DOI: 10.1016/0001-6160(63)90193-7
Google Scholar
[24]
D.E. Laughlin, Spinodal decomposition in Nickel based Nickel-Titanium alloys, Acta Metall. 24 (1976) 53-58.
DOI: 10.1016/0001-6160(76)90146-2
Google Scholar
[25]
A.G. Khachaturyan, T.F. Lindsey, J.W. Morris, Theoretical investigation of the precipitation of δ' in Al-Li, Metall. Trans. A 19 (1988) 249-258.
Google Scholar
[26]
U.D. Kulkarni, G.K. Dey, I.S. Batra, A new face-centered-cubic superlattice structure in rapidly solidified Cu-4 wt pct Ti alloy and its relevance to the ordering process in Ni-Mo and other 11/20 ordering alloys, Metall. Mater. Trans. A 33 (2002) 3573-3576.
DOI: 10.1007/s11661-002-0346-4
Google Scholar
[27]
U.D. Kulkarni, G.K. Dey, Ordering and topologically close packed-phase precipitation in a Ni–25 at. % Mo–5 at. %Al alloy, Acta Mater. 52 (2004) 2711–2720.
DOI: 10.1016/j.actamat.2004.02.019
Google Scholar
[28]
S. Hata, D. Shindob, T. Mitatea, N. Kuwanoa, S. Matsumurac, K. Okia, HRTEM image contrast of short range order in Ni4Mo, Micron 31 (2000) 533–538.
DOI: 10.1016/s0968-4328(99)00134-1
Google Scholar
[29]
H.M. Tawancy, Long-range ordering behaviour and mechanical properties of Ni-Mo-based alloys, J. Mater. Sci. 30 (1995) 522-537.
DOI: 10.1007/bf00354421
Google Scholar
[30]
S. Hata, S. Matsumura, N. Kuwano, K. Oki, D. Shindo, Short range order in Ni4Mo and its high resolution electron microscope images, Acta Mater. 46 (1998) 4955-4961.
DOI: 10.1016/s1359-6454(98)00180-3
Google Scholar
[31]
E.S.K. Menon, P.L. Martin, Microstructure of melt-spun Ni-Mo-Al, Scr. Metall. Mater. 27 (1992) 55-60.
DOI: 10.1016/0956-716x(92)90319-a
Google Scholar
[32]
T. Sato, Y. Kojima, T. Takahashi, Modulated Structures and GP Zones in Al-Mg Alloys, Metall. Trans. A 13 (1982) 1373-1378.
DOI: 10.1007/bf02642874
Google Scholar
[33]
J.W. Cahn, Hardening by spinodal decomposition, Acta Metall. 11 (1963) 1275-1280.
Google Scholar