[1]
Mordike B L, Ebert T. Magnesium: properties—applications—potential[J]. Materials Science and Engineering: A, 2001, 302(1): 37-45.
Google Scholar
[2]
Liu H, Chen Y, Tang Y, et al. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1–10) % Sn alloys[J]. Journal of Alloys and Compounds, 2007, 440(1-2): 122-126.
DOI: 10.1016/j.jallcom.2006.09.024
Google Scholar
[3]
Qu H P, Wang H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys[J]. Materials Science and Engineering: A, 2007, 466(1-2): 187-194.
DOI: 10.1016/j.msea.2007.02.073
Google Scholar
[4]
Huang X, Wu A, Li Q, et al. Effects of extrusion and Ag, Zn addition on the age-hardening response and microstructure of a Mg-7Sn alloy[J]. Materials Science and Engineering: A, 2016, 661: 233-239.
DOI: 10.1016/j.msea.2016.03.037
Google Scholar
[5]
Zhao C Y, Pan F S, Pan H C. Microstructure, mechanical and bio-corrosion properties of as-extruded Mg–Sn–Ca alloys[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6):1574-1582.
DOI: 10.1016/s1003-6326(16)64232-2
Google Scholar
[6]
Sasaki T T, Ju J D, Hono K, et al. Heat-treatable Mg–Sn–Zn wrought alloy[J]. ScriptaMaterialia, 2009, 61(1): 80-83.
DOI: 10.1016/j.scriptamat.2009.03.014
Google Scholar
[7]
Zhao H D, Qin G W, Ren Y P, et al. Microstructure and tensile properties of as-extruded Mg-Sn-Y alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s493-s497.
DOI: 10.1016/s1003-6326(10)60525-0
Google Scholar
[8]
Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy[J]. Materials Science and Engineering: A, 2002, 337(1-2): 121-133.
DOI: 10.1016/s0921-5093(02)00007-2
Google Scholar
[9]
Kang D H, Park S S, Kim N J. Development of creep resistant die cast Mg–Sn–Al–Si alloy[J]. Materials Science and Engineering: A, 2005, 413: 555-560.
DOI: 10.1016/j.msea.2005.09.022
Google Scholar
[10]
Pan F, Yang M. Preliminary investigations about effects of Zr, Sc and Ce additions on as-cast microstructure and mechanical properties of Mg–3Sn–1Mn (wt.%) magnesium alloy[J]. Materials Science and Engineering: A, 2011, 528(15): 4973-4981.
DOI: 10.1016/j.msea.2011.02.095
Google Scholar
[11]
Li W, Huang X, Huang W. Effects of Ca, Ag addition on the microstructure and age-hardening behavior of a Mg-7Sn (wt%) alloy[J]. Materials Science and Engineering: A, 2017, 692: 75-80.
DOI: 10.1016/j.msea.2017.03.066
Google Scholar
[12]
Mehta D S, Masood S H, Song W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications[J]. Journal of Materials Processing Technology, 2004, 155-156(6):1526-1531.
DOI: 10.1016/j.jmatprotec.2004.04.247
Google Scholar
[13]
Zhiyong Y, Yuhua Z, Weili C, et al. Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1 Sb high zinc magnesium alloy[J]. China Foundry, 2012, 9(1).
Google Scholar
[14]
Li J, Qu Z, Wu R, et al. Effects of Cu addition on the microstructure and hardness of Mg–5Li–3Al–2Zn alloy[J]. Materials Science and Engineering: A, 2010, 527(10-11): 2780-2783.
DOI: 10.1016/j.msea.2010.01.021
Google Scholar
[15]
Nayyeri G, Mahmudi R. Effects of Ca additions on the microstructural stability and mechanical properties of Mg–5% Sn alloy[J]. Materials & Design, 2011, 32(3): 1571-1576.
DOI: 10.1016/j.matdes.2010.09.019
Google Scholar
[16]
Shi B Q, Chen R S, Wei K E. Effect of element Gd on phase constituent and mechanical property of Mg-5Sn-1Ca alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s341-s345.
DOI: 10.1016/s1003-6326(10)60494-3
Google Scholar
[17]
Lee B J, Hwang N M, Lee H M. Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation[J]. Acta Materialia, 1997, 45(5): 1867-1874.
DOI: 10.1016/s1359-6454(96)00325-4
Google Scholar