Microstructure and Macrosegregation of Ф508 mm 7050 Aluminum Alloy Billet under Internal Electromagnetic Stirring

Article Preview

Abstract:

To obtain fine microstructure and homogeneous distribution of alloying elements in the large-sized billet, the internal electromagnetic stirring as a new electromagnetic stirring method was proposed and utilized for the preparation of Ф508 mm 7050 aluminum alloy billet. The results demonstrate that the internal electromagnetic stirring could refine the microstructure and second phase, and alleviated the macrosegregation significantly. The grain size at the edge, 1/2 radius, and center of the billet decreased to 180 μm, 175 μm, and 185 μm, respectively. Moreover, the relative macrosegregation of Zn, Mg, and Cu at the edge and center decreased to 3.9% and 2.8%, 2.3% and 1.6%, 4.1% and 2.5%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-137

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.J. Bucci, C.J. Warren, E.A. Starke, Need for new materials in aging aircraft structures, J. Aircr. 37 (2000) 122-129.

DOI: 10.2514/2.2571

Google Scholar

[2] J.C. Williams, E. A. Starke, Progress in structural materials for aerospace systems, Acta Mater. 51 (2003) 5775-5799.

Google Scholar

[3] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A, 280 (2000) 102-107.

DOI: 10.1016/s0921-5093(99)00674-7

Google Scholar

[4] N.M. Han, X.M. Zhang, S.D. Liu, B. Ke, X. Xin, Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050, Mater. Sci. Eng., A, 528 (2011) 3714-3721.

DOI: 10.1016/j.msea.2011.01.068

Google Scholar

[5] J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, F.M. Xue, Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain, Mater. Des. 42 (2012) 369-377.

DOI: 10.1016/j.matdes.2012.06.032

Google Scholar

[6] D.G. Eskin, R. Nadella, L. Katgerman, Effect of different grain structures on centerline macrosegregation during direct-chill casting, Acta Mater. 56 (2008) 1358-1365.

DOI: 10.1016/j.actamat.2007.11.021

Google Scholar

[7] P.S. Mohanty, J.E. Gruzleski, Mechanism of grain refinement in aluminium, Acta Metall. Mater. 43 (1995) 2001-2012.

DOI: 10.1016/0956-7151(94)00405-7

Google Scholar

[8] H. Zou, Q.L. Pan, Y.J. Shi, J. Chen, H. Xiang, R.S. Li, H. Li, Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy, J. Cent. South Univ. 25 (2018) 1285-1294.

DOI: 10.1007/s11771-018-3825-5

Google Scholar

[9] R.Q. Li, Z.L. Liu, P.H. Chen, Z.T. Zhong, X.Q. Li, Investigation on the manufacture of a large-scale aluminum alloy ingot: microstructure and macrosegregation, Adv. Eng. Mater. 19 (2017) 1600375.

DOI: 10.1002/adem.201600375

Google Scholar

[10] Y. Qiu, Z.F. Zhang, H.D. Zhao, B. Li, C.S. Chen, Effect of UDC casting on hot deformation behavior and properties of 2A14 aluminum alloy, Mater. Sci. Forum. 944 (2019) 46-51.

DOI: 10.4028/www.scientific.net/msf.944.46

Google Scholar

[11] D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, (2008).

DOI: 10.1201/9781420062823

Google Scholar

[12] L.H. Zhang, J. Yu, X.M. Zhang, Effect of ultrasonic power and casting speed on solidification structure of 7050 aluminum alloy ingot in ultrasonic field, J. Cent. South Univ. Technol. 17 (2010) 431-436.

DOI: 10.1007/s11771-010-0502-8

Google Scholar

[13] X.Q. Li, D.X. Chen, R.P. Jiang, Effect of ultrasonic field on centerline segregation of cast aluminum alloy 7050 ingots, Adv. Mater. Res. 399-401 (2012) 66-70.

DOI: 10.4028/www.scientific.net/amr.399-401.66

Google Scholar

[14] X.Q. Li, R.P. Jiang, Z.H. Li, L.H. Zhang, X. Zhang, Characteristics and formation mechanism of segregation during the solidification of aluminum alloy with ultrasonic radiation, Mater. Sci. Forum. 697-698 (2012) 383-388.

DOI: 10.4028/www.scientific.net/msf.697-698.383

Google Scholar

[15] C. Mapelli, A. Gruttadauria, M. Peroni, Application of electromagnetic stirring for the homogenization of aluminium billet cast in a semi-continuous machine, J. Mater. Process. Technol. 210 (2010) 306-314.

DOI: 10.1016/j.jmatprotec.2009.09.016

Google Scholar

[16] S. Simlandi, N. Barman, H. Chattopadhyay, Studies on transport phenomena during continuous casting of an Al-alloy in presence of electromagnetic stirring, Trans. Indian Inst. Met. 66 (2013) 141-146.

DOI: 10.1007/s12666-012-0205-y

Google Scholar

[17] Y.B. Zuo, J.Z. Cui, D. Mou, Q.F. Zhu, X.J. Wang, L. Li, Effect of electromagnetic field on microstructure and macrosegregation of flat ingot of 2524 aluminium alloy, Trans. Nonferrous Met. Soc. China, 24 (2014) 2408-2413.

DOI: 10.1016/s1003-6326(14)63364-1

Google Scholar

[18] S. Komarov, D. Kuznetsov, Erosion resistance and performance characteristics of niobium ultrasonic sonotrodes in molten aluminum, Int. J. Refract. Met. Hard Mater. 35 (2012) 76-83.

DOI: 10.1016/j.ijrmhm.2012.04.004

Google Scholar

[19] F. Dong, X.Q. Li, L.H. Zhang, L.Y. Ma, R.Q. Li, Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt, Ultrason. Sonochem. 31 (2016) 150-156.

DOI: 10.1016/j.ultsonch.2015.12.009

Google Scholar

[20] M.O. Tang, J. Xu, Z.F. Zhang, Y.L. Bai, 3D numerical simulation of flow and temperature field in semi-solid slurry preparation by A-EMS, Mater. Sci. Forum. 689 (2011) 16-23.

DOI: 10.4028/www.scientific.net/msf.689.16

Google Scholar

[21] Y. Qiu, Z.F. Zhang, Y.J. Luo, M.W. Gao, C.S. Chen, Effect of coupled annular electromagnetic stirring and intercooling on the microstructures, macrosegregation and properties of large-sized 2219 aluminum alloy billets, Int. J. Mater. Res. 109 (2018) 469-475.

DOI: 10.3139/146.111620

Google Scholar

[22] Y.J. Luo, Z.F. Zhang, B. Li, M.W. Gao, Y. Qiu, M. He, Effects of annular electromagnetic stirring coupled with intercooling on grain refinement and homogeneity during direct chill casting of large-sized 7005 alloy billet, JOM. 69 (2017) 2640-2643.

DOI: 10.1007/s11837-017-2340-8

Google Scholar

[23] R. Nadella, D. G. Eskin, Q. Du, L. Katgerman, Macrosegregation in direct-chill casting of aluminium alloys, Prog. Mater. Sci. 53 (2008) 421-480.

DOI: 10.1016/j.pmatsci.2007.10.001

Google Scholar

[24] Y.J. Luo, Z.F. Zhang, Numerical modeling of annular electromagnetic stirring with intercooling in direct chill casting of 7005 aluminum alloy billet, Prog. Nat. Sci.: Mater. Int. 29 (2019) 81-87.

DOI: 10.1016/j.pnsc.2019.01.007

Google Scholar

[25] D. G. Eskin, L. Katgerman, Macrosegregation mechanisms in direct-chill casting of aluminium alloys[J]. Mater. Sci. Forum. 630 (2010) 193-199.

DOI: 10.4028/www.scientific.net/msf.630.193

Google Scholar