Modeling of Yield Strength in Retrogression of RRA Treatment of Spray Formed Al-Zn-Mg-Cu Alloy

Article Preview

Abstract:

7075 alloy is the most typical Al-Zn-Mg-Cu alloy and widely used in industry. In the present study the regularities of the change for the size and volume fraction of the precipitates in the retrogression process and the effects of aging time on strengthening of spray formed 7075 alloy were investigated based on the thermodynamics, aging kinetics and hardening theory. The results show that there was a relationship between the parameters of retrogression treatment and yield strength of the alloy. A unified model is presented to establish the quantitative relations between the retrogression process and the yield strengths of spray formed 7075 alloy from the perspective of combining micro and macro.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Qin, R. Chen, P.K. Liaw, Y. Gao, X. Li, H. Zheng, L. Wang, Y. Su, J. Guo and H. Fu. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates. Scripta Mater. 172, (2019) 51-55.

DOI: 10.1016/j.scriptamat.2019.07.008

Google Scholar

[2] G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding and J. Guo. Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100-xCox high-entropy alloys. Mater. Sci. Eng., A 710 (2018) 200–205.

DOI: 10.1016/j.msea.2017.10.088

Google Scholar

[3] M.F. Ashby: Physical modelling of materials problems. Mater. Sci. Technol. 8 (1992) 102-111.

Google Scholar

[4] P. Guyot and L. Cottignies: Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys. Acta Mater. 44 (1996) 4161-4167.

DOI: 10.1016/s1359-6454(96)00033-x

Google Scholar

[5] M.J. Starink, P. Wang, I. Sinclair and P.J. Gregson: Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: I. analysis and modelling of microstructural changes. Acta Mater. 47 (1999) 3841-3853.

DOI: 10.1016/s1359-6454(99)00227-x

Google Scholar

[6] M.J. Starink, P. Wang, I. Sinclair and P.J. Gregson: Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater. 47 (1999) 3855-3868.

DOI: 10.1016/s1359-6454(99)00228-1

Google Scholar

[7] P. Merle, F. Fouquet and J. Merlin: Experimental and theoretical determinations of the yield stress of an alloy containing plate-like precipitates: θ' phase in an Al-4wt.% Cu alloy. Mater. Sci. Eng. 50 (1981) 215-220.

DOI: 10.1016/0025-5416(81)90180-4

Google Scholar

[8] A.W. Zhu and Jr.E.A. Starke: Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Mater. 47 (1999) 3263-3269.

DOI: 10.1016/s1359-6454(99)00179-2

Google Scholar

[9] M.J. Starink and S.C. Wang: A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 51 (2009) 5131-5150.

DOI: 10.1016/s1359-6454(03)00363-x

Google Scholar

[10] G. Liu, G.J. Zhang, X.D. Ding, J. Sun and K.H. Chen: Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates. Mater. Sci. Eng. 344 (2003) 113-124.

DOI: 10.1016/s0921-5093(02)00398-2

Google Scholar

[11] H.B. Aaron, D. Fainstein and G.R. Kotler: Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. J. Appl. Phys. 41 (1970) 4404-4410.

DOI: 10.1063/1.1658474

Google Scholar

[12] M.J. Jones and F.J. Humphreys: Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater. 51 (2003) 2149-2159.

DOI: 10.1016/s1359-6454(03)00002-8

Google Scholar

[13] B.A. Pletcher, K.G. Wang and M.E. Glicksman: Ostwald ripening in Al–Li alloys: A test of theory. Int. J. Mater. Res. 103 (2012) 1289-1293.

DOI: 10.3139/146.110777

Google Scholar

[14] P. Laurençot and S. Mischler: From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations. J. Statistical Phy. 106 (2002) 957-991.

Google Scholar

[15] M. Tiryakioğlu, G. Ökten, D. Hudak, R.T. Shuey and J.P. Suni: On evaluating fit of the Lifshitz–Slyozov–Wagner (LSW) distribution to particle size data. Mater. Sci. Eng., A 527 (2010) 1636-1639.

DOI: 10.1016/j.msea.2009.11.054

Google Scholar

[16] S. Spriano, R. Doglione and M. Baricco: Texture, hardening and mechanical anisotropy in AA 8090-T851 plate. Mater. Sci. Eng., A 257 (1998) 134-138.

DOI: 10.1016/s0921-5093(98)00831-4

Google Scholar

[17] A.C. Reddy and E. Zitoun: Strengthening mechanisms and fracture behavior of 7072Al/Al2O3 metal matrix composites. Int. J. Eng. Sci. Tech. 3 (2011) 6090-6100.

Google Scholar

[18] M.J. Starink and S.C. Wang: The thermodynamics of and strengthening due to co-clusters: general theory and application to the case of Al–Cu–Mg alloys. Acta Mater. 57 (2009) 2376-2389.

DOI: 10.1016/j.actamat.2009.01.021

Google Scholar

[19] J.F. Nie: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Mater. 48 (2003) 1009-1015.

DOI: 10.1016/s1359-6462(02)00497-9

Google Scholar