Microstructure of 7075 Aluminum Alloy by Homogenization

Article Preview

Abstract:

A 7075 aluminum alloy is widely used in the fields of transportation and aerospace because of its high strength and low density. In this paper, the effect of homogenization annealing on the microstructure of 7075 aluminum alloy was studied. The microstructure and second phase evolution of 7075 aluminum alloy were analyzed by optical microscope (OM), X-ray diffractometer (XRD), scanning electron microscope (SEM), energy spectrometer (EDS) and differential scanning calorimeter (DSC). The results showed that the as-cast microstructure of 7075 aluminum alloy was equiaxial crystal, and non-equilibrium eutectic microstructure Mg(Zn, Cu, Al)2 produced along the grain boundary. In the subsequent first-order homogenization annealing, part of Mg(Zn,Cu,Al)2 was converted to Al2CuMg phase. However, the transformation was not fully complete. Mg(Zn,Cu,Al)2 was then completely converted to Al2CuMg phase in the second order homogenization annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-145

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chen Xiaohui, Yan Hong, Jie Xiaoping, Effects of Ti addition on microstructure and mechanical properties of 7075 alloy, Int. J. Cast. Met. Res. 28 (2014) 151-157.

DOI: 10.1179/1743133614y.0000000137

Google Scholar

[2] Zhang Fei, Su Xuekuan, Chen Ziyong, Nie Zuoren, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al−Zn−Mg−Cu aluminum alloy, Mater. Des. 67 (2015) 483−491.

DOI: 10.1016/j.matdes.2014.10.055

Google Scholar

[3] Chen Gang, hen Qiang, Wang Bo, Du Zhiming, Microstructure evolution and tensile mechanical properties of thixoformed high performance Al−Zn−Mg−Cu alloy, Met. Mater. Int. 21 (2015) 897−906.

DOI: 10.1007/s12540-015-5139-6

Google Scholar

[4] Sun Yi-shan, Jiang Fu-lin, Zhang Hui, Su Jian, Yuan Wu-hua, Residual stress relief in Al−Zn−Mg−Cu alloy by a new multistage interrupted artificial aging treatment, Proc. Natl. Acad. Sci. U. S. A, 92 (2016) 281−287.

DOI: 10.1016/j.matdes.2015.12.004

Google Scholar

[5] Y.C. Lin, L.T. Li, Y.X. Fu, Y.Q. Jiang, Hot compressive deformation behavior of 7075 Al alloy under elevated temperature, J. Mater. Sci. 47 (2012) 1306-1318.

DOI: 10.1007/s10853-011-5904-y

Google Scholar

[6] M.R. Rokni, A.Z. Hanzaki, A.A. Roostaei, A. Abolhasani, Constitutive base analysis of a 7075 aluminum alloy during hot compression testing, Mater. Des, 32 (2011) 4955-4960.

DOI: 10.1016/j.matdes.2011.05.040

Google Scholar

[7] M.R. Rokni, A.Z. Hanzaki, A.A. Roostaei, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater. Des. 32 (2011) 2339-2344.

DOI: 10.1016/j.matdes.2010.12.047

Google Scholar

[8] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy, J. Alloys. Compd. 550 (2013) 438-445.

DOI: 10.1016/j.jallcom.2012.10.114

Google Scholar

[9] Y.B. Yang, Z.M. Zhang, X.B. Li, Q. Wang, Y.H. Zhang, The effects of grain size on the hot deformation and processing map for 7075 aluminum alloy, Mater. Des. 51 (2013) 592-597.

DOI: 10.1016/j.matdes.2013.04.034

Google Scholar

[10] Z.C. Sun, L.S. Zheng, H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact. 90 (2014) 71-80.

DOI: 10.1016/j.matchar.2014.01.019

Google Scholar

[11] Xiuliang Zou, Hong Yan, Xiaohui Chen, Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment, Trans. Nonferrous. Met. Soc. China. 27(2017) 2146−2155.

DOI: 10.1016/s1003-6326(17)60240-1

Google Scholar

[12] W.X. Shu, J.C. Liu, L.G. Hou, H. Cui, J.T. Liu, Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization, Int. J. Miner. Met. Mater. 21 (2014) 1215-1221.

DOI: 10.1007/s12613-014-1029-z

Google Scholar

[13] Y.L. Deng, L. Wan, L.H. Wu, Y.Y. Zhang, X.M. Zhang, Microstructural evolution of Al-Zn-Mg-Cu alloy during homogenization, J. Mater. Sci. 46 (2011) 875-881.

DOI: 10.1007/s10853-010-4828-2

Google Scholar

[14] C.M. Li, Z.Q. Chen, S.M. Zeng, N.P. Cheng, T.X. Chen, Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys. Sci. China. Tech. Sci. 56 (2013) 2827-2838.

DOI: 10.1007/s11431-013-5356-5

Google Scholar

[15] T. Liu, C.N. He, G. Li, X. Meng, C.S. Shi, Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization, Int. J. Miner. Met. Mater. 22 (2015) 516-523.

DOI: 10.1007/s12613-015-1101-3

Google Scholar

[16] L. He, X. Li, P. Zhu, Y. Cao, Y. Guo. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization, Mater. Charact. 71 (2012) 19-23.

DOI: 10.1016/j.matchar.2012.05.014

Google Scholar

[17] X.G. Fan, D.M. Jiang, Q.C. Meng, Z. Li, The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization, Mater. Lett. 60 (2006) 1475-1479.

DOI: 10.1016/j.matlet.2005.11.049

Google Scholar

[18] Y. Deng, Z. Yin, F, Cong, Intermetallic phase evolution of 7050 aluminum alloy during homogenization, Intermet. 26 (2012) 114-121.

DOI: 10.1016/j.intermet.2012.03.006

Google Scholar