[1]
H. Fang, H. Chao, K. CHEN. Effect of Zr, Er and Cr addition on microstructures and properties of Al-Zn-Mg-Cu alloys, J. Materials Science and Engineering. 610 (2014) 10-16.
DOI: 10.1016/j.msea.2014.05.021
Google Scholar
[2]
M. Dixit, R. Mishra, K. K. Sankaran. Structure-property correlation in Al 7050 and 7055 high-strength aluminum alloys, J. Materials Science and Engineering: A. 478 (2008) 163-172.
DOI: 10.1016/j.msea.2007.05.116
Google Scholar
[3]
B. Tweedy, C. Widener, D. Burford. Fundamental properties of friction stir welded Al 7136 including effects of post-weld artificial aging, C. Sixth International Symposium on Friction Stir Welding, Saint-Sauveur, Nr Montreal, Canada. (2006).
DOI: 10.1108/acmm.2005.12852dac.001
Google Scholar
[4]
X. Chen, K. Chen, P. Dong, G. Peng, S. Chen. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation, J. The Chinese Journal of Nonferrous Metals. 23 (2013) 44-50.
Google Scholar
[5]
J. Xue, Y. Wang, Z. Zhang, J. Xie. Effects of extrusion temperature on dynamic recrystallization, aging microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, J. The Chinese Journal of Nonferrous Metals. 27(11) (2017) 2204-2211.
Google Scholar
[6]
X. Wang, M. Guo, L. Cao, et al. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment, J. Materials Science and Engineering: A. 621 (2015) 8-17.
DOI: 10.1016/j.msea.2014.10.045
Google Scholar
[7]
Q. Zang, H. Yu, Y. Lee, et al. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt. %) alloy, J. Journal of Alloys & Compounds, (2018).
DOI: 10.1016/j.jallcom.2018.05.307
Google Scholar
[8]
M. Starink, S. Wang. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, J. Acta Materialia, 51(17) (2003) 5131-5150.
DOI: 10.1016/s1359-6454(03)00363-x
Google Scholar
[9]
F. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena, J. 2nd ed. Oxford. London: Pergamon Press, (2004) 86-105.
Google Scholar
[10]
Y. Zhang, Y. Deng, L. Wan, X. Zhang. Effects of thermal mechanical treatment on the microstructures and hardness of an Al-Zn-Mg-Cu alloy plate, J. Acta Metallurgica Sinica, 47(10) (2011) 1270-1276.
Google Scholar
[11]
W. Mao, P. Yang, L. Chen. Principle of Material Texture Analysis and Detecting Technology, Metallurgical Industry Press, Beijing, 2008, pp.20-35. (in Chinese).
Google Scholar
[12]
B. Morere, J. Ehrstrom, P. Gregson, et al. Microstructural effects on fracture toughness in AA7010 plate, J. Metallurgical and Materials Transactions A (Physical Metallurgy and, Materials Science), 31(10) (2000) :2503-2515.
DOI: 10.1007/s11661-000-0195-y
Google Scholar
[13]
N. Han, X. Zhang, S. Liu, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050, J. Materials Science & Engineering A, 528(10) (2011) :3714-3721.
DOI: 10.1016/j.msea.2011.01.068
Google Scholar
[14]
Z. Cvijovic, M. Vratnica, M. Rakin. Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings, J. Materials Science & Engineering A, 434 (1/2) (2006): 339-346.
DOI: 10.1016/j.msea.2006.07.018
Google Scholar
[15]
Z. Cvijovi, M. Rakin, M. Vratnica, et al. Microstructural dependence of fracture toughness in high-strength 7000 forging alloys, J. Engineering Fracture Mechanics, 75(8) (2008):2115-2129.
DOI: 10.1016/j.engfracmech.2007.10.010
Google Scholar