Microstructure and Mechanical Properties of 5052 Al Alloy by Cryogenic Rolling

Article Preview

Abstract:

The microstructure, mechanical properties, texture evolution and microstructure-property relationship of 5052 Al alloy by cryogenic-rolling (CR) and room-temperature rolling (RTR) were investigated. The results show that CR can effectively refine the grain size and optimize the comprehensive mechanical properties of the material. At the same time, the maximum strengthening effect of CR can be achieved when the deformation is 50%. In addition, the temperature benefit of CR can reduce stacking fault energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-91

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A, 137 (1991) 35.

Google Scholar

[2] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet, Acta Metall., 42 (1994) 2467.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[3] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater., 44 (1996) 4619.

Google Scholar

[4] K. Neishi, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A, 325 (2002) 54–58.

Google Scholar

[5] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T. G. Langdon, Acta Mater., 50 (2002) 553.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater., 39 (1998) 1221.

Google Scholar

[7] N.Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, Scr. Mater., 40 (1999) 795.

Google Scholar

[8] N.Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater., 47 (2002) 893.

Google Scholar

[9] R.Z. Abdulov, R.Z. Valiev, N.A. Krasilnikov, J. Mater. Sci. Lett., 9 (1990) 1445.

Google Scholar

[10] R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, B. Baudelet, Acta Mater., 44 (1996) 4705.

Google Scholar

[11] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. Oxford: Pergamon; 1996. P.16.

Google Scholar

[12] G.H. Zahid, Y. Huang, Acta Mater. 57 (2009) 3509.

Google Scholar

[13] Y. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature. 419 (2002) 912.

Google Scholar

[14] Y.B. Lee, D.H. Shin, W.J. Nam. J. Mater. Sci. 40 (2005) 797.

Google Scholar

[15] Y.B. Lee, D.H. Shin , W.J. Nam.  Met. Mater. Int. (MMI), 10(5) (2004) 407.

Google Scholar

[16] B. Jung, A. Singh, G. Sharma, J. K. Chakravartty. TMS, 2 (2012) 805.

Google Scholar

[17] V.S. Sarma, J.Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y.T. Zhu. Mater Sci Eng. A, 527 (2010) 7624.

Google Scholar

[18] Y.B Lee, D.H. Shin, K.T. Park, W.J. Nam. Scripta Mater 51 (2004) 355.

Google Scholar

[19] S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma Acta Mater. 55 (2007) 5822.

Google Scholar

[20] U.I. Gang, S.H. Lee, W.J. Nam, Mater Trans. 50 (2009) 82.

Google Scholar

[21] K.S.V.B. Krishna, K.C. Sekhar, R. Tejas, N.N. Krishna, K. Sivaprasad, R. Narayanasamy, K.Venckateswarlu. Mater. Des., 67 (2015) 107.

Google Scholar

[22] T. Leffers, Scr. Metall. 2 (1968) 447.

Google Scholar

[23] J T Shi, L G Hou, J R Zuo, L Z Zhuang, J S Zhang. Mater. Sci. Eng., A, 2017, 701: 274–284.

Google Scholar