[1]
Changlin Yang, Liu Feng, Gencang Yang, Yaohe Zhou, Structure evolution upon non-equilibrium solidification of bulk undercooled Fe–B system. Journal of Crystal Growth 311 (2009), 404-412.
DOI: 10.1016/j.jcrysgro.2008.11.025
Google Scholar
[2]
Wei Wei Wang, Bin Bin Jia, Jing Bo Yu, Microstructure Evolution and Mechanical Properties of 7A09 Aluminum Alloy during Rapid Solidifications. Advanced Materials Research 79-82 (2009), 1791-1794.
DOI: 10.4028/www.scientific.net/amr.79-82.1791
Google Scholar
[3]
W. Yang, F. Liu, H. F. Wang, B. P. Lu, G. C. Yang, Non-equilibrium transformation kinetics and primary grain size distribution in the rapid solidification of Fe–B hypereutectic alloy. Journal of Alloys & Compounds 509 (2011), 2903-2908.
DOI: 10.1016/j.jallcom.2010.11.152
Google Scholar
[4]
Nico Weyrich, Shan Jin, Liliana I. Duarte, Christian Leinenbach, Joining of Cu, Ni, and Ti Using Au-Ge-Based High-Temperature Solder Alloys. Journal of Materials Engineering & Performance 23 (2014), 1585-1592.
DOI: 10.1007/s11665-014-0864-4
Google Scholar
[5]
Yunzhu Ma, Wu Tong, Wensheng Liu, Yufeng Huang, Siwei Tang, Yikai Wang, Interfacial microstructure evolution and shear behavior of Au–12Ge/Ni solder joints during isothermal aging. Journal of Materials Science Materials in Electronics 28 (2016), 1-10.
DOI: 10.1007/s10854-016-5974-3
Google Scholar
[6]
Lili Ma, Xinglin Huang, Zha Jie, in International Conference on Electronic Packaging Technology. (2013), pp.946-949.
Google Scholar
[7]
C. Leinenbach, F. Valenza, D. Giuranno, H. R. Elsener, S. Jin, R. Novakovic, Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates. Journal of Electronic Materials 40 (2011), 1533-1541.
DOI: 10.1007/s11664-011-1639-4
Google Scholar
[8]
Z. Chen, Y. Zhang, S. Wang, J. Y. Zhang, Q. Tao, P. Zhang, Microstructure and mechanical properties of undercooled Fe 80 C 5 Si 10 B 5 eutectic alloy. Journal of Alloys & Compounds 747 (2018), 846-853.
DOI: 10.1016/j.jallcom.2018.03.065
Google Scholar
[9]
B. H Kear, B. C Giessen, M Cohen, Rapidly solidified amorphous and crystalline alloys : proceedings of the Materials Research Society Annual Meeting, November 1981, Boston Park Plaza Hotel, Boston, Massachusetts, U.S.A. Mrs Bulletin 7 (1982), 5-5.
DOI: 10.1557/s0883769400049605
Google Scholar
[10]
H. Okamoto, T. B. Massalski, The Au−Ge (Gold-Germanium) system. Bulletin of Alloy Phase Diagrams 5 (1984), 601-610.
DOI: 10.1007/bf02868323
Google Scholar
[11]
D. Turnbull, J. C. Fisher, Rate of Nucleation in Condensed Systems. The Journal of Chemical Physics 17 (1949), 71-73.
Google Scholar
[12]
Frans Spaepen, A structural model for the solid-liquid interface in monatomic systems. Acta Metallurgica 23 (1975), 729-743.
DOI: 10.1016/0001-6160(75)90056-5
Google Scholar
[13]
J. F. Li, W. Q. Jie, S. Zhao, Y. H. Zhou, Structural Evidence for the Transition from Coupled to Decoupled Growth in the Solidification of Undercooled Ni-Sn Eutectic Melt. Metallurgical & Materials Transactions A 38 (2007), 1806-1816.
DOI: 10.1007/s11661-007-9198-2
Google Scholar
[14]
S. Zhao, J. F. Li, L. Liu, Y. H. Zhou, Cellular growth of lamellar eutectics in undercooled Ag–Cu alloy. Materials Characterization 60 (2009), 519-524.
DOI: 10.1016/j.matchar.2008.12.006
Google Scholar
[15]
Zhao Su, Jinfu Li, Liu Li, Yaohe Zhou, Eutectic growth from cellular to dendritic form in the undercooled Ag–Cu eutectic alloy melt. Journal of Crystal Growth 311 (2009), 1387-1391.
DOI: 10.1016/j.jcrysgro.2008.12.006
Google Scholar
[16]
Su Zhao, Dong Lai Wei, Qing Miao, Structures and Undercooling Technology of Ag-28.1 wt.% Cu Eutectic Alloy. Advanced Materials Research 750-752 (2013), 734-738.
DOI: 10.4028/www.scientific.net/amr.750-752.734
Google Scholar