[1]
Baluc N, Gelles D S, Jitsukawa S, et al. Status of reduced activation ferritic/martensitic steel development[J]. Journal of Nuclear Materials, 2007, 367: 33-41.
DOI: 10.1016/j.jnucmat.2007.03.036
Google Scholar
[2]
Fu H, Nagasaka T, Muroga T, et al. Weldability of 9Cr-ODS and JLF-1 steels for dissimilar joining with hot isostatic pressing and electron beam welding[J]. Plasma and Fusion Research, 2015, 10(3405015): 1-4.
DOI: 10.1585/pfr.10.3405015
Google Scholar
[3]
Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic–martensitic ODS Eurofer steel[J]. Materials Science and Engineering: A, 2011, 528(3): 1442-1447.
DOI: 10.1016/j.msea.2010.10.051
Google Scholar
[4]
Kuběna I, Polák J, Marmy P, et al. A comparison of microstructure evolution due to fatigue loading in Eurofer 97 and ODS Eurofer steels[J]. Procedia Engineering, 2014, 74: 401-404.
DOI: 10.1016/j.proeng.2014.06.288
Google Scholar
[5]
Rahmanifard R, Farhangi H, Novinrooz A J. Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite[J]. Journal of Alloys and Compounds, 2015, 622: 948-952.
DOI: 10.1016/j.jallcom.2014.11.018
Google Scholar
[6]
Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38: 471-503.
DOI: 10.1146/annurev.matsci.38.060407.130315
Google Scholar
[7]
Capdevila C, Bhadeshia H K D H. Manufacturing and microstructural evolution of mechanuically alloyed oxide dispersion strengthened superalloys[J]. Advanced Engineering Materials, 2001, 3(9): 647-656.
DOI: 10.1002/1527-2648(200109)3:9<647::aid-adem647>3.0.co;2-4
Google Scholar
[8]
Chao J, Capdevila C, Serrano M, et al. Effect of α–α' phase separation on notch impact behavior of oxide dispersion strengthened (ODS) Fe20Cr5Al alloy[J]. Materials and Design, 2014, 53: 1037-1046.
DOI: 10.1016/j.matdes.2013.08.007
Google Scholar
[9]
Hasegawa M, Takeshita K. Strengthening of steel by the method of spraying oxide particles into molten steel stream[J]. Metallurgical Transactions B, 1978, 9(3): 383-388.
DOI: 10.1007/bf02654411
Google Scholar
[10]
Takamura. J. Mizoguchi. S. Roles of oxides in steel performance[C]. Proceedings of the sixth international iron and steel congress, 1990, Nagoya, ISIJ, 591-597.
Google Scholar
[11]
Shi Z, Han F. The microstructure and mechanical properties of micro-scale Y2O3 strengthened 9Cr steel fabricated by vacuum casting[J]. Materials and Design, 2015, 66: 304-308.
DOI: 10.1016/j.matdes.2014.10.075
Google Scholar
[12]
Moghadasi M A, Nili-Ahmadabadi M, Forghani F, et al. Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model[J]. Scientific reports, 2016, 6: 38621.
DOI: 10.1038/srep38621
Google Scholar
[13]
Wang G Ch, Wang T M, Li S N, et al. Study on the process of adding A12O3 nano-powder to molten pure iron[J]. Journal of University of Science and Technology Beijing, 2007, 29(6): 578-581.
Google Scholar
[14]
Fu R, Qin Y, Chen X C, et al. Influence of Ti on Inclusions in Si-Mn Deoxidized FeNi42 Alloy[J]. Journal of Iron and Steel Research, 2008, 20(11): 20-24.
Google Scholar
[15]
Han Q Y. Metallurgical process dynamics[M], Beijing: Industry Publisher, 1983. 11.
Google Scholar
[16]
Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation[J]. ISIJ international, 2006, 46(1): 33-41.
DOI: 10.2355/isijinternational.46.33
Google Scholar
[17]
Xue Z L, Qi J H, Jin Y, et al. Deoxidization of extra-low oxygen steel and size of oxide inclusions[J]. Journal of Wuhan University of Science and Technology. (Natural Science Edition), 2006, 29(6): 541-543.
Google Scholar
[18]
Furuya Y, Matsuoka S. Gigacycle fatigue properties of a modified-ausformed Si-Mn steel and effects of microstructure[J]. Metallurgical and Materials Transactions A, 2004, 35(6): 1715-1723.
DOI: 10.1007/s11661-004-0080-1
Google Scholar
[19]
Kikuchi N, Nabeshima S, Kishimoto Y, et al. Micro-structure Refinement in Low Carbon High Manganese Steels through Ti-deoxidation-Inclusion Precipitation and Solidification Structure[J]. ISIJ international, 2008, 48(7): 934-943.
DOI: 10.2355/isijinternational.48.934
Google Scholar
[20]
Liang Y J, Che Y. C. Handbook of Inorganic Thermodynamics Data[M], Shenyang: Northeastern University Publisher, (2007).
Google Scholar
[21]
Karasev A V, Suito H. Effects of oxide particles and solute elements on austenite grain growth in Fe–0.05 mass% C and Fe–10mass% Ni alloys[J]. ISIJ international, 2008, 48(5): 658-666.
DOI: 10.2355/isijinternational.48.658
Google Scholar
[22]
Wang L M, Du T, Lu X L, et al. Thermodynamics and Application of Rare Earth Elements in Steel[J]. Journal of the Chinese Rare Earth Society, 2003, 21(3): 251-254.
Google Scholar