Deoxidation Process of Oxidized Zirconium Alloy

Article Preview

Abstract:

When zirconium alloy is corroded, an oxide film is formed on the surface, which hinders the ion transfer during the corrosion process. Therefore, the analysis of the oxide film is an important part of the research on the corrosion resistance of zirconium alloys. In this paper, two kinds of Zr-Sn-Nb alloys were corroded in 400 °C/10.3 MPa pure steam and 500 °C/10.3 MPa pure steam in autoclave to obtain samples with oxide thickness of 14 um and 18 um respectively. Then they were annealed at 800 °C at a pressure of 10-4 Pa for 18 h. XRD and WDS studies were used to analyze the structure and oxygen content of the oxide film after annealing. The results indicate that the oxide films of alloys change from zirconium dioxide to zirconium after annealing. The oxygen diffuses into the substrate and its content decreases continuously with increasing diffusion distance. Combined with the SEM analysis of cross-section samples, it is found that the annealed samples are composed of several layers. An oxygen-saturated zirconium layer, a transitional layer with micro-cracks, an oxygen-dissolved α-Zr layer and a β-Zr layer are identified. Based on these results, the mechanism of the ion transfer in the oxide film during annealing is analyzed deeply. It is proposed that space charges in the oxide film have a major impact on deoxidation kinetics. This study provides a new research method for the corrosion mechanism of zirconium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-28

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kuwae, K. Sato, H. Emiko, K. Junko, S. Nakamura, Mechanism of Zircaloy Nodular Corrosion, J. Nucl. Mater. 119 (1983) 229~239.

DOI: 10.1016/0022-3115(83)90199-x

Google Scholar

[2] J. P. Pemsler, Diffusion of oxygen in zirconium and its relation to oxidation and corrosion, Electrochem. Soc. 105 (1958) 315-322.

DOI: 10.1149/1.2428734

Google Scholar

[3] B. Cox, Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys, J. Nucl. Mater. 336 (2005) 331-368.

DOI: 10.1016/j.jnucmat.2004.09.029

Google Scholar

[4] K. Forsberg, M. Limbäck, A. R. Massih, A model for uniform Zircaloy clad corrosion in pressurized water reactors, Nucl. Eng. Des. 154 (1995) 157-168.

DOI: 10.1016/0029-5493(94)00915-l

Google Scholar

[5] T. Y. Park, S. J. Yoo, B. K. Choi, Y. H. Jeong, Corrosion and oxide characteristics of Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr alloys in 360°C pure water and LiOH solution. J. Nucl. Mater. 373 (2008) 343-350.

DOI: 10.1016/j.jnucmat.2007.06.015

Google Scholar

[6] Y. Matsuda, H. Anada, H. E. Bishop, 18O Tracer study of the oxidation of zircaloy-4 in steam, Surf. Interface Anal. 21 (1994) 349-355.

DOI: 10.1002/sia.740210605

Google Scholar

[7] N. Ni, S. Lozano-Perez, M. L. Jenkins, C. English, G. D. W. Smith, J. M. Sykes, C. R. M. Grovenor, Porosity in oxides on zirconium fuel cladding alloys and its importance in controlling oxidation rates, Scripta. Mater. 62 (2009) 564-567.

DOI: 10.1016/j.scriptamat.2009.12.043

Google Scholar

[8] V. Pawar, C. Weaver, S. Jani, Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications, Appl. Surf. Sci. 257 (2011) 6118–6124.

DOI: 10.1016/j.apsusc.2011.02.014

Google Scholar

[9] M. Mosbacher, F. Scherm, U. Glatzel, Oxygen diffusion kinetics of an advanced three step heat treatment for zirconium alloy ZrNb7, Surf. Coat. Technol. 339 (2018) 139-146.

DOI: 10.1016/j.surfcoat.2018.02.015

Google Scholar

[10] D. Gosset, M. Le Saux, D. Simeone, D. Gilbon, New insights in structural characterization of zirconium alloys oxidation at high temperature, J. Nucl. Mater. 429 (2012) 19-24.

DOI: 10.1016/j.jnucmat.2012.05.003

Google Scholar

[11] A. Couet, A. T. Motta, A. Ambard, The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys, Corros. Sci. 100 (2015) 73-84.

DOI: 10.1016/j.corsci.2015.07.003

Google Scholar

[12] J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R. J. Comstock, L. Hallstadius, D. Hudson, G. D. W. Smith, C. R. M. Grovenor, M. Klaus, R.A. Cottis, S. Lyon, M. Preuss, The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys, Acta Mate. 61 (2013) 4200-4214.

DOI: 10.1016/j.actamat.2013.03.046

Google Scholar

[13] A. Yilmazbayhan, E. Breval, A. T. Motta, Transmission electron microscopy examination of oxide layer formed on Zr alloys, J. Nucl. Mater. 349 (2006) 265-281.

DOI: 10.1016/j.jnucmat.2005.10.012

Google Scholar

[14] J. Y. Park, B. K. Choi, S. J. Yoo, Y. H. Jeong, Corrosion behavior and oxide properties of Zr-1.1wt% Nb-0.05wt% Cu alloy, J. Nucl. Mater. 359 (2006) 59–68.

DOI: 10.1016/j.jnucmat.2006.07.017

Google Scholar

[15] G. P. Sabol, S. B. Dalgaard, The origin of the cubic rate law in zirconium alloy oxidation, Electrochem. Soc. 122 (1975) 316-317.

DOI: 10.1149/1.2134204

Google Scholar

[16] H. E. Evans, D. J. Norfolk, T. Swan, Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers, Electrochem. Soc. 125 (1978) 1180-1185.

DOI: 10.1149/1.2131644

Google Scholar

[17] C. C. Dollins, M. Jursich, A model for the oxidation of zirconium-based alloys, J. Nucl. Mater. 123 (1983) 19-24.

Google Scholar

[18] M. Tupin, M. Pijolat, F. Valdivieso, M. Soustelle, A. Frichet, P. Barberis, Differences in reactivity of oxide growth during the oxidation of Zircaloy-4 in water vapour before and after the kinetic transition, J. Nucl. Mater. 317 (2003) 130-144.

DOI: 10.1016/s0022-3115(02)01704-x

Google Scholar

[19] T. Pauporte, J. Finne, Impedance spectroscopy study of anodic growth of thick zirconium oxide films in H2SO4, Na2SO4 and NaOH solutions, J. Appl. Electrochem. 36 (2006) 33-41.

DOI: 10.1007/s10800-005-9011-0

Google Scholar