[1]
Kök, M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites Part A: Applied Science and Manufacturing 2006, 37, 457-464.
DOI: 10.1016/j.compositesa.2005.05.038
Google Scholar
[2]
Ravindran, P.; Manisekar, K.; Rathika, P.; Narayanasamy, P. Tribological properties of powder metallurgy – Processed aluminium self lubricating hybrid composites with SiC additions. Materials & Design 2013, 45, 561-570.
DOI: 10.1016/j.matdes.2012.09.015
Google Scholar
[3]
Dinaharan, I.; Murugan, N. Microstructure and some properties of aluminium alloy AA6061 reinforced in situ formed zirconium diboride particulate stir cast composite. International Journal of Cast Metals Research 2014, 27, 115-121.
DOI: 10.1179/1743133613y.0000000097
Google Scholar
[4]
Song, M.; He, Y.; Fang, S. Yield stress of SiC reinforced aluminum alloy composites. Journal of Materials Science 2010, 45, 4097-4110.
DOI: 10.1007/s10853-010-4498-0
Google Scholar
[5]
Ashok Kumar, B.; Murugan, N. Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Materials & Design 2012, 40, 52-58.
DOI: 10.1016/j.matdes.2012.03.038
Google Scholar
[6]
Abbasi Chianeh, V.; Madaah Hosseini, H.R.; Nofar, M. Micro structural features and mechanical properties of Al–Al3Ti composite fabricated by in-situ powder metallurgy route. Journal of Alloys and Compounds 2009, 473, 127-132.
DOI: 10.1016/j.jallcom.2008.05.068
Google Scholar
[7]
Chaudhari, M.; Kumar, M.S. Reinforcement and Cutting Tools Interaction during MMC Machining - A Review. Nano Hybrids and Composites 2018, 22, 47-54.
DOI: 10.4028/www.scientific.net/nhc.22.47
Google Scholar
[8]
Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers. Materials & Design 2014, 60, 34-40.
DOI: 10.1016/j.matdes.2014.03.039
Google Scholar
[9]
Qin, Y.C.; He, S.Y.; Yang, D.Z. Effect of thermal–mechanical cycling on thermal expansion behavior of boron fiber-reinforced aluminum matrix composite. Materials Chemistry and Physics 2004, 86, 204-209.
DOI: 10.1016/j.matchemphys.2004.03.009
Google Scholar
[10]
Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei Akbari, M.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S., et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing 2017, 92, 70-96.
DOI: 10.1016/j.compositesa.2016.10.032
Google Scholar
[11]
Dinaharan, I.; Ashok Kumar, G.; Vijay, S.J.; Murugan, N. Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing. Materials & Design 2014, 63, 213-222.
DOI: 10.1016/j.matdes.2014.06.008
Google Scholar
[12]
Varin, R.A. Intermetallic-reinforced light-metal matrix in-situ composites. Metallurgical and Materials Transactions A 2002, 33, 193-201.
DOI: 10.1007/s11661-002-0018-4
Google Scholar
[13]
Liu, C.Y.; Wang, Q.; Jia, Y.Z.; Zhang, B.; Jing, R.; Ma, M.Z.; Jing, Q.; Liu, R.P. Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Materials Science and Engineering: A 2012, 547, 120-124.
DOI: 10.1016/j.msea.2012.03.095
Google Scholar
[14]
Zhang, H.; Feng, P.; Akhtar, F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci Rep 2017, 7, 12391.
DOI: 10.1038/s41598-017-12302-w
Google Scholar
[15]
Feng, Y.C.; Geng, L.; Li, A.B.; Zheng, Z.Z. Fabrication and characteristics of in situ Al12W particles reinforced aluminum matrix composites by reaction sintering. Materials & Design 2010, 31, 965-967.
DOI: 10.1016/j.matdes.2009.08.021
Google Scholar
[16]
Cai, S.; Ma, X.; Tang, H. In situ WAl12 particle-reinforced Al matrix composites synthesized by combining mechanical alloying and vacuum hot pressing technology. Journal of Alloys and Compounds 2012, 520, 170-173.
DOI: 10.1016/j.jallcom.2011.12.168
Google Scholar
[17]
Cai, S. G. Fabrication of Al-Based Matrix Composite Reinforced with WAl<sub>12</sub> Intermetallic Particles by Press-Forming Process Using High-Energy Ball-Milled Powders. Advanced Materials Research 2012, 476-478, 574-578.
DOI: 10.4028/www.scientific.net/amr.476-478.574
Google Scholar
[18]
Wang, X.; Guo, J.; Lin, Y.; Guo, X.; Peng, J.; Zhou, X. Study the effect of SiC content on the wear behavior and mechanism of as-extruded SiCp/Al–Cu–Mg–Zn alloy under simulating drilling operation. Surface and Interface Analysis 2016, 48, 853-860.
DOI: 10.1002/sia.5891
Google Scholar
[19]
Zhu, C.; Ma, X.; Zhao, W.; Tang, H.; Yan, J.; Cai, S. Processing, microstructure and mechanical properties of WAl bulk alloy obtained by mechanical alloying and hot-pressing. Scripta Materialia 2004, 51, 993-997.
DOI: 10.1016/j.scriptamat.2004.07.015
Google Scholar