Mechanical and Tribological Behaviors of WAl12 Reinforced 2024 Aluminum Alloy Matrix Composites

Article Preview

Abstract:

WAl12 reinforced 2024 aluminum alloy matrix composites were prepared by powder metallurgy with tungsten particles and W50Al50 alloy particles. The effects of WAl12 on the mechanical properties of 2024 aluminum alloy composites at room temperature and high temperature were studied, and the friction behavior was characterized. The results show that intermetallic WAl12 phase forms in the composite by 2024 aluminum alloy and tungsten. The mechanical properties and friction behavior can be improved by the formation of intermetallic WAl12 phase. The tensile strength of 2024 aluminum alloy at room temperature and 180 °C can be improved by adding tungsten less than 1.5 at.%. Adding 2.0 at.% tungsten can reduce the friction coefficient by 20 % and the scratch width by 40 %. The tensile fracture surface of the sample was analyzed by scanning electron microscopy (SEM), indicating that WAl12 intermetallic phase is closely connected with the aluminum matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-67

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kök, M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites Part A: Applied Science and Manufacturing 2006, 37, 457-464.

DOI: 10.1016/j.compositesa.2005.05.038

Google Scholar

[2] Ravindran, P.; Manisekar, K.; Rathika, P.; Narayanasamy, P. Tribological properties of powder metallurgy – Processed aluminium self lubricating hybrid composites with SiC additions. Materials & Design 2013, 45, 561-570.

DOI: 10.1016/j.matdes.2012.09.015

Google Scholar

[3] Dinaharan, I.; Murugan, N. Microstructure and some properties of aluminium alloy AA6061 reinforced in situ formed zirconium diboride particulate stir cast composite. International Journal of Cast Metals Research 2014, 27, 115-121.

DOI: 10.1179/1743133613y.0000000097

Google Scholar

[4] Song, M.; He, Y.; Fang, S. Yield stress of SiC reinforced aluminum alloy composites. Journal of Materials Science 2010, 45, 4097-4110.

DOI: 10.1007/s10853-010-4498-0

Google Scholar

[5] Ashok Kumar, B.; Murugan, N. Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Materials & Design 2012, 40, 52-58.

DOI: 10.1016/j.matdes.2012.03.038

Google Scholar

[6] Abbasi Chianeh, V.; Madaah Hosseini, H.R.; Nofar, M. Micro structural features and mechanical properties of Al–Al3Ti composite fabricated by in-situ powder metallurgy route. Journal of Alloys and Compounds 2009, 473, 127-132.

DOI: 10.1016/j.jallcom.2008.05.068

Google Scholar

[7] Chaudhari, M.; Kumar, M.S. Reinforcement and Cutting Tools Interaction during MMC Machining - A Review. Nano Hybrids and Composites 2018, 22, 47-54.

DOI: 10.4028/www.scientific.net/nhc.22.47

Google Scholar

[8] Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers. Materials & Design 2014, 60, 34-40.

DOI: 10.1016/j.matdes.2014.03.039

Google Scholar

[9] Qin, Y.C.; He, S.Y.; Yang, D.Z. Effect of thermal–mechanical cycling on thermal expansion behavior of boron fiber-reinforced aluminum matrix composite. Materials Chemistry and Physics 2004, 86, 204-209.

DOI: 10.1016/j.matchemphys.2004.03.009

Google Scholar

[10] Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei Akbari, M.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S., et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing 2017, 92, 70-96.

DOI: 10.1016/j.compositesa.2016.10.032

Google Scholar

[11] Dinaharan, I.; Ashok Kumar, G.; Vijay, S.J.; Murugan, N. Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing. Materials & Design 2014, 63, 213-222.

DOI: 10.1016/j.matdes.2014.06.008

Google Scholar

[12] Varin, R.A. Intermetallic-reinforced light-metal matrix in-situ composites. Metallurgical and Materials Transactions A 2002, 33, 193-201.

DOI: 10.1007/s11661-002-0018-4

Google Scholar

[13] Liu, C.Y.; Wang, Q.; Jia, Y.Z.; Zhang, B.; Jing, R.; Ma, M.Z.; Jing, Q.; Liu, R.P. Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Materials Science and Engineering: A 2012, 547, 120-124.

DOI: 10.1016/j.msea.2012.03.095

Google Scholar

[14] Zhang, H.; Feng, P.; Akhtar, F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci Rep 2017, 7, 12391.

DOI: 10.1038/s41598-017-12302-w

Google Scholar

[15] Feng, Y.C.; Geng, L.; Li, A.B.; Zheng, Z.Z. Fabrication and characteristics of in situ Al12W particles reinforced aluminum matrix composites by reaction sintering. Materials & Design 2010, 31, 965-967.

DOI: 10.1016/j.matdes.2009.08.021

Google Scholar

[16] Cai, S.; Ma, X.; Tang, H. In situ WAl12 particle-reinforced Al matrix composites synthesized by combining mechanical alloying and vacuum hot pressing technology. Journal of Alloys and Compounds 2012, 520, 170-173.

DOI: 10.1016/j.jallcom.2011.12.168

Google Scholar

[17] Cai, S. G. Fabrication of Al-Based Matrix Composite Reinforced with WAl<sub>12</sub> Intermetallic Particles by Press-Forming Process Using High-Energy Ball-Milled Powders. Advanced Materials Research 2012, 476-478, 574-578.

DOI: 10.4028/www.scientific.net/amr.476-478.574

Google Scholar

[18] Wang, X.; Guo, J.; Lin, Y.; Guo, X.; Peng, J.; Zhou, X. Study the effect of SiC content on the wear behavior and mechanism of as-extruded SiCp/Al–Cu–Mg–Zn alloy under simulating drilling operation. Surface and Interface Analysis 2016, 48, 853-860.

DOI: 10.1002/sia.5891

Google Scholar

[19] Zhu, C.; Ma, X.; Zhao, W.; Tang, H.; Yan, J.; Cai, S. Processing, microstructure and mechanical properties of WAl bulk alloy obtained by mechanical alloying and hot-pressing. Scripta Materialia 2004, 51, 993-997.

DOI: 10.1016/j.scriptamat.2004.07.015

Google Scholar