Precipitation Behavior and Strengthening Mechanism of Second Phases in AZ31-1.3Ca-1.0Sm-0.3La Alloy

Article Preview

Abstract:

A new type of AZ31-1.3Ca-1.0Sm-0.3La alloy was obtained in this study by adding Ca, Sm and La to AZ31 alloy. Detailed analysis results on second phases showed that Al2Ca phases, Al2Sm phases with two kinds of morphologies formed in as-cast AZ31-1.3Ca-1.0Sm-0.3La alloy besides Mg17Al12 phases, and La atoms mainly dissolved in Al2Ca/Sm phases. The average grain size of as-cast AZ31-1.3Ca-1.0Sm-0.3La alloys was 212 μm and the grain sizes distributions were uniform. After the hot extrusion, the average grain size decreased to 5.4 μm and the grain sizes distributions were uneven. The base texture of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was strong, and the maximum density value was 3.25. The yield strength, ultimate tensile strength and elongation of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was 216 MPa, 280 MPa and 16% at RT, and 145 MPa, 188 MPa and 42% at 150°C, respectively, which are much higher than those of the common MB2 alloy both at the room temperature and 150 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-312

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Smola,I.Stulı́ková,F. von Buch,et al. Structural Aspects of High Performance[J]. Mater. Sci. Eng. A,2002, 324: 113-117.

DOI: 10.1016/s0921-5093(01)01291-6

Google Scholar

[2] A. Jain,O. Duygulu,D. W. Brown, et al. Grain Size Effects on the Tensile Properties and Deformation Mechanisms of a Magnesium Alloy, AZ31B, sheet[J]. Mater. Sci. Eng. A,2008, 486:545-555.

DOI: 10.1016/j.msea.2007.09.069

Google Scholar

[3] F. K. Abu-Farha,M. R. Khraisheh. Mechanical Characteristics of Superplastic Deformation of AZ31 Magnesium Alloy[J].J. Mater. Eng. Perform, 2007, 16:192-199.

DOI: 10.1007/s11665-007-9031-5

Google Scholar

[4] H. Zhang, W. Jin,J. F. Fan, et al. Grain Refining and Improving Mechanical Properties of a Warm Rolled AZ31 Alloy Plate[J].Mater. Lett., 2014, 135:31-34.

DOI: 10.1016/j.matlet.2014.07.130

Google Scholar

[5] H. Zhang,Y. Liu,J. F. Fan, et al. Microstructure Evolution and Mechanical Properties of Twinned AZ31 Alloy Plates at Lower Elevated Temperature[J]. J. Alloys Compd., 2014, 615: 687-692.

DOI: 10.1016/j.jallcom.2014.07.045

Google Scholar

[6] M. Z. Li,Y. Q. Wang,C. Li,et al. Effects of Neodymium Rich Rare Earth Elements on Microstructure and Mechanical Properties of as Cast AZ31 Magnesium Alloy[J].Mater. Sci. Tech., 2011,27:1138-1142.

DOI: 10.1179/026708310x12668415533883

Google Scholar

[7] J. Zhang, M. Zhang, J. Meng, et al. Microstructures and Mechanical Properties of Heat-resistant High-pressure Die-Cast Mg-4Al-xLa-0.3Mn (x=1, 2, 4, 6) Alloys[J]. Mater. Sci. Eng. A., 2010, 527: 2527-2537.

DOI: 10.1016/j.msea.2009.12.048

Google Scholar

[8] X. Y. Hu, P. H. Fu, D. StJohn, et al. On Grain Coarsening and Refining of the Mg-3Al alloy by Sm[J]. J. Alloys Compd., 2016, 663: 387-394.

DOI: 10.1016/j.jallcom.2015.11.193

Google Scholar

[9] J. H. Jun, B. K. Park, J. M. Kim, et al. Effects of Ca Addition on Microstructure and Mechanical Properties of Mg-RE-Zn Casting Alloy[J]. Mater. Sci. Forum., 2005, 488-489: 107-110.

DOI: 10.4028/www.scientific.net/msf.488-489.107

Google Scholar

[10] W. Q. Zhang, W. L. Xiao, F. Wang, et al. Development of Heat Resistant Mg-Zn-Al-based Magnesium Alloys by Addition of La and Ca: Microstructure and Tensile Properties[J]. J. Alloys Compd., 2016, 684: 8-14.

DOI: 10.1016/j.jallcom.2016.05.137

Google Scholar

[11] Y. A. Chen, L. Jin, D. Fang, et al. Effects of Calcium, Samarium Addition on Microstructure and Mechanical Properties of AZ61 Magnesium Alloy[J]. J. Rare Earths., 2015, 33: 86-92.

DOI: 10.1016/s1002-0721(14)60387-2

Google Scholar

[12] L. Fu, X. B. Wang, P. L. Gou, et al. Microstructures and Tensile Properties of AZ91 Magnesium Alloys with Ca, Sm, and La Elements Additions[J]. Adv. Eng. Mater., 2017, 19(12): 1700230.

DOI: 10.1002/adem.201700230

Google Scholar

[13] L. Fu, Q. C. Le, P. L. Gou, et al. Effects of Ca and RE Additions on the Precipitation and Microstructure of as-Cast AZ91 Alloy[J]. Appl. Mech. Mater., 2017, 865: 30-35.

DOI: 10.4028/www.scientific.net/amm.865.30

Google Scholar

[14] G. Cacciamani, R. Ferro. Thermodynamic Modeling of Some Aluminium-Rare Earth Binary Systems: Al-La, Al-Ce and Al-Nd[J]. Calphad., 2001, 25(4): 583-597.

DOI: 10.1016/s0364-5916(02)00009-3

Google Scholar

[15] M. Aljarrah, M. Medraj, X. Wanga, et al. Experimental Investigation of the Mg-Al-Ca System[J]. J. Alloys Compd., 2007, 436: 131-141.

Google Scholar

[16] B.S. Murty, S.A. Kori, M. Chakraborty. Grain Refinement of Aluminium and its Alloys by Heterogeneous Nucleation and Alloying[J]. Int. Mater. Rev., 2002, 47: 3-29.

DOI: 10.1179/095066001225001049

Google Scholar