[1]
P.X. Ouyang, G.B. Mi, J.X. Cao, et al. Microstructure Characteristics after combustion and fireproof mechanism of TiAl-based alloys, J. Materials Today Communications. 16 (2000) 364–373.
DOI: 10.1016/j.mtcomm.2018.07.012
Google Scholar
[2]
H. Jiang. Research and Application Status of Titanium Alloys at Home and Abroad, J. New material industry. 3 (2017) 7-10.
Google Scholar
[3]
G. Miranda, S. Faria, F. Bartolomeu, et al. A study on the production of thin-walled Ti6Al4V parts by selective laser melting, J. Journal of Manufacturing Processes. 39 (2019) 346–35.
DOI: 10.1016/j.jmapro.2018.12.036
Google Scholar
[4]
L.Denti, E. Bassoli, A. Gatto, et al. Fatigue life and microstructure of additive manufactured Ti6Al4V after different finishing processes, J. Materials Science & Engineering A. 755 (2019) 1-9.
DOI: 10.1016/j.msea.2019.03.119
Google Scholar
[5]
L. Maj, J.Morgiel, K. Mars, et al. Microstructure and hardness of Ti6Al4V/NiAl/Ti6Al4V joints obtained through resistive heating, J. Journal of Materials Processing Tech. 255 (2018) 689–695.
DOI: 10.1016/j.jmatprotec.2018.01.023
Google Scholar
[6]
R.F. Dong, J.S. Li, B. Tang, et al. Research Development of Titanium for Fastener Application in Aerospace, J. Aviation Manufacturing Technology. 16 (2018) 86-91.
Google Scholar
[7]
Q.B. Ao, H.P. Tang, J.L. Zhu, et al. Current Status of Research on High Temperature Liner Materials in Aero- engines, J. Materials Review. 23 (2009) 507-509.
Google Scholar
[8]
M. Yu , H.Y. Zhao, Z.H. Jiang, et al. Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds,J. Journal of Materials Processing Tech. 270 (2019) 274–284.
DOI: 10.1016/j.jmatprotec.2019.03.007
Google Scholar
[9]
Z.L. Liang, Z.G. Sun, W.S. Zhang, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy, J. Journal of Alloys and Compounds. 782 (2019) 1041-1048.
DOI: 10.1016/j.jallcom.2018.12.051
Google Scholar
[10]
O.M. Ivasyshyn, A.V. Aleksandrov. Status of the titanium production, research,and applications in the CIS, J. Mater Sci. 44 (2008) 311–27.
DOI: 10.1007/s11003-008-9079-x
Google Scholar
[11]
M.Jahedi, S.Zahiri, S.Gulizia. et al. Direct manufacturing of titanium parts by cold spray, J. Mater Sci Forum 2009 618–619.
DOI: 10.4028/www.scientific.net/msf.618-619.505
Google Scholar
[12]
H.W. Ouyang, W.T. Yu, G.Y. Tang, et al. Selective laser sintering a kind of rapid prototyping technology based on special powders, J. Mater Sci Eng Pow Matall.12 (2007) 1–7.
Google Scholar
[13]
B. Liu, Y.B. Liu, X. Yang, Y. Liu. Development of international titanium industry, preparation technology and applications, J. Mater Sci Eng Pow Metall. 14 (2008) 67–73.
Google Scholar
[14]
H. K. Edwin. 21st annual international titanium association conference and exhibition,J. Light Metal Age. ;64 (2006) 65–69.
Google Scholar
[15]
G. Adam, D.L. Zhang, J.Liang, Macrae I. A novel process for lowering the cost of titanium, J. Adv Mater Res 29 (2007) 147–52.
Google Scholar
[16]
K. Kitaoka. Market development of titanium in Japan and the future prospect,J. Mater Forum. 29 (2005) 30–38.
Google Scholar
[17]
V.R. Jablokov, M.J. Nutt, M.E. Richelsoph, et al. The application of Ti–15Mo beta titanium alloy in high strength structural orthopaedic applications,J. ASTM Int. 2 (2005) 491–508.
DOI: 10.1520/jai13033
Google Scholar
[18]
M. Gogebakan, O. Uzun, T. Karaaslan, et al. Rapidly solidified Al-6.5%Ni alloy,J. Journal of Materials Processin Technology, 142 (2003) 87-92.
DOI: 10.1016/s0924-0136(03)00466-7
Google Scholar
[19]
W.T. Kim, B. Cantor. The variation of grain size with cooling rate during melt spinning, J. Scripta Metallurgica Materialia. 24(1990) 633-637.
DOI: 10.1016/0956-716x(90)90214-2
Google Scholar
[20]
T.You, X.C. Yuan, G.Q. Su, et al. Rapid Solidification Technology of Titanium Alloys and Its Research Status, J. casting. 56(2007) 567-571.
Google Scholar
[21]
P. Han, H.C. Kou, J.R. Yang, et al. Solidification microstructure characteristics of Ti–44Al–4Nb–2Cr–0.1B alloy under various cooling rates during mushy zone, J. Rare Metals. 35(2016) 35–41.
DOI: 10.1007/s12598-015-0633-z
Google Scholar