[1]
A. Heinz, A. Haszler, C. Keidel, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A 280 (2000) 102-107.
DOI: 10.1016/s0921-5093(99)00674-7
Google Scholar
[2]
T. S. Srivatsan, Microstructure, tensile properties and fracture behavior of aluminium alloy 7150. J. Mater. Sci. 27(1992) 4772-4781.
DOI: 10.1007/bf01166019
Google Scholar
[3]
A. Pierre, G. David, High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in-situ electrical resistivity measurements and differential calorimetry, Scripta Mater. 42 (2000) 675-680.
DOI: 10.1016/s1359-6462(99)00419-4
Google Scholar
[4]
D. Dumont, A. Deschamps, Y. Bréchet, C. Sigli, J.C. Ehrström, Characterisation of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behavior, Mater. Sci. Tech-lond. 20 (2004) 567-576.
DOI: 10.1179/026708304225016662
Google Scholar
[5]
D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, B.C. Muddle, Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance, Corros. Sci. 53 (2011) 217-225.
DOI: 10.1016/j.corsci.2010.09.015
Google Scholar
[6]
Y.L. Deng, L. Wan, Y. Zhang, X.M. Zhang, Evolution of microstructures and textures of 7050 Al alloy hot-rolled plate during staged solution heat-treatments, J. Alloy Compd. 498 (2010) 88-94.
DOI: 10.1016/j.jallcom.2010.03.117
Google Scholar
[7]
N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, R. Zhang, Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050, J. Alloy Compd. 509 (2011) 4138-4145.
DOI: 10.1016/j.jallcom.2011.01.005
Google Scholar
[8]
J.D. Robson, Microstructural evolution in aluminium alloy 7050 during processing, Mater. Sci. Eng. A 382 (2004) 112-121.
DOI: 10.1016/j.msea.2004.05.006
Google Scholar
[9]
H.C. Fang, K.H. Chen, X. Chen, Effect of Cr, Yb and Zr additions on localized corrosion of Al–Zn–Mg–Cu alloy, Corros Sci. 51 (2009) 2872-2877.
DOI: 10.1016/j.corsci.2009.08.001
Google Scholar
[10]
B. Morere, R. Shahani, C. Maurice, The influence of Al3Zr dispersoids on the recrystallization of hot-deformed AA 7010 alloys, Metall Mater Trans A. 32 (2001) 625-632.
DOI: 10.1007/s11661-001-0079-9
Google Scholar
[11]
N.E. Mazibuko, U.A. Curle. Effect of solution heat treatment time on a rheocast Al–Zn–Mg–Cu alloy, Mater Sci Forum. 690 (2011) 343-346.
DOI: 10.4028/www.scientific.net/msf.690.343
Google Scholar
[12]
A. Azarniya, A.K. Taheri, K.K. Taheri. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloy Compd. 781 (2019) 945-983.
DOI: 10.1016/j.jallcom.2018.11.286
Google Scholar
[13]
W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A 657 (2016) 269-283.
DOI: 10.1016/j.msea.2016.01.039
Google Scholar