[1]
M. Yamanouchi, M. Koizumi, T. Hirai, I. Shiota, Proc. First Int. Symp. on Functionally Gradient Materials, FGM Forum Tokyo, Japan, (1990).
Google Scholar
[2]
F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions, Composites Part B: Engineering 78 (2015) 272-290.
DOI: 10.1016/j.compositesb.2015.03.068
Google Scholar
[3]
A. Fallah, M. Aghdam, Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation, European Journal of Mechanics-A/Solids 30(4) (2011) 571-583.
DOI: 10.1016/j.euromechsol.2011.01.005
Google Scholar
[4]
A. Fallah, M. Aghdam, Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation, Composites Part B: Engineering 43(3) (2012) 1523-1530.
DOI: 10.1016/j.compositesb.2011.08.041
Google Scholar
[5]
E. Shahabinejad, N. Shafiei, M. Ghadiri, Influence of Temperature Change on Modal Analysis of Rotary Functionally Graded Nano-beam in Thermal Environment, Journal of Solid Mechanics Vol 10(4) (2018) 779-803.
Google Scholar
[6]
X. Jia, L. Ke, X. Zhong, Y. Sun, J. Yang, S. Kitipornchai, Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory, Composite Structures 202 (2018) 625-634.
DOI: 10.1016/j.compstruct.2018.03.025
Google Scholar
[7]
R.A. Shanab, M.A. Attia, S.A. Mohamed, N.A. Mohamed, Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium, Journal of Nano Research, Trans Tech Publ, 2020, pp.97-117.
DOI: 10.4028/www.scientific.net/jnanor.61.97
Google Scholar
[8]
S. Merdaci, Free Vibration Analysis of Composite Material Plates" Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities, Nano Hybrids and Composites, Trans Tech Publ, 2019, pp.69-83.
DOI: 10.4028/www.scientific.net/nhc.25.69
Google Scholar
[9]
Y. Huang, J. Fu, A. Liu, Dynamic instability of Euler–Bernoulli nanobeams subject to parametric excitation, Composites Part B: Engineering 164 (2019) 226-234.
DOI: 10.1016/j.compositesb.2018.11.088
Google Scholar
[10]
Y.-Z. Wang, Y.-S. Wang, L.-L. Ke, Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory, Physica E: Low-dimensional Systems and Nanostructures 83 (2016) 195-200.
DOI: 10.1016/j.physe.2016.05.020
Google Scholar
[11]
S. Krylov, I. Harari, Y. Cohen, Stabilization of electrostatically actuated microstructures using parametric excitation, Journal of Micromechanics and Microengineering 15(6) (2005) 1188.
DOI: 10.1088/0960-1317/15/6/009
Google Scholar
[12]
M. Darabi, R. Ganesan, Non-linear vibration and dynamic instability of internally-thickness-tapered composite plates under parametric excitation, Composite Structures 176 (2017) 82-104.
DOI: 10.1016/j.compstruct.2017.04.059
Google Scholar
[13]
Y.-Z. Wang, Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory, Applied Mathematical Modelling 48 (2017) 621-634.
DOI: 10.1016/j.apm.2017.04.018
Google Scholar
[14]
C. Li, C.W. Lim, J. Yu, Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Materials and Structures 20(1) (2010) 015023.
DOI: 10.1088/0964-1726/20/1/015023
Google Scholar
[15]
M. Ghadiri, S.H. S Hosseini, Nonlinear forced vibration of graphene/piezoelectric sandwich nanoplates subjected to a mechanical shock, Journal of Sandwich Structures & Materials (2019) 1099636219849647.
DOI: 10.1177/1099636219849647
Google Scholar
[16]
A.C. Eringen, Nonlocal polar elastic continua, International journal of engineering science 10(1) (1972) 1-16.
DOI: 10.1016/0020-7225(72)90070-5
Google Scholar
[17]
M.A. Eltaher, F.-A. Omar, W.S. Abdalla, A.M. Kabeel, A.E. Alshorbagy, Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects, Structural Engineering and Mechanics 76(1) (2020) 141-151.
Google Scholar
[18]
R. Ansari, R. Gholami, H. Rouhi, Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Composite Structures 126 (2015) 216-226.
DOI: 10.1016/j.compstruct.2015.02.068
Google Scholar
[19]
R.M. Abo-Bakr, M.A. Eltaher, M.A. Attia, Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects, Engineering with Computers (2020) 1-22.
DOI: 10.1007/s00366-020-01146-0
Google Scholar
[20]
A. Farajpour, M.H. Ghayesh, H. Farokhi, A coupled nonlinear continuum model for bifurcation behaviour of fluid-conveying nanotubes incorporating internal energy loss, Microfluidics and Nanofluidics 23(3) (2019) 34.
DOI: 10.1007/s10404-019-2199-9
Google Scholar
[21]
M.A. Eltaher, N.A. Mohamed, Vibration of nonlocal perforated nanobeams with general boundary conditions, Smart Structures and Systems 25(4) (2020) 501-514.
Google Scholar
[22]
I. Esen, C. Özarpa, M.A. Eltaher, Free Vibration of a Cracked FG Microbeam Embedded in an Elastic Matrix and Exposed to Magnetic Field in a Thermal Environment, Composite Structures 113552.
DOI: 10.1016/j.compstruct.2021.113552
Google Scholar
[23]
S.A. Emam, M.A. Eltaher, M.E. Khater, W.S. Abdalla, Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load, Applied Sciences 8(11) (2018) 2238.
DOI: 10.3390/app8112238
Google Scholar
[24]
A.K. Jha, S.S. Dasgupta, Mathematical modeling of a fractionally damped nonlinear nanobeam via nonlocal continuum approach, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2019) 0954406219866467.
DOI: 10.1177/0954406219866467
Google Scholar
[25]
A.A. Abdelrahman, H.E. Abd-El-Mottaleb, M.A. Eltaher, On bending analysis of perforated microbeams including the microstructure effects, Structural Engineering and Mechanics 76(6) (2020) 765.
Google Scholar
[26]
N. Mohamed, S. Mohamed, M. Eltaher, Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model, Engineering with Computers (2020) 1-14.
DOI: 10.1007/s00366-020-00976-2
Google Scholar
[27]
A.A. Daikh, M.S.A. Houari, M.A. Eltaher, A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates, Composite Structures (2020) 113347.
DOI: 10.1016/j.compstruct.2020.113347
Google Scholar
[28]
A.A. Daikh, A. Drai, M.S.A. Houari, M.A. Eltaher, Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes, Steel and Composite Structures 36(6) (2020) 643-656.
DOI: 10.1016/j.dt.2021.09.011
Google Scholar
[29]
M.A. Eltaher, N. Mohamed, S. Mohamed, L.F. Seddek, Postbuckling of curved carbon nanotubes using energy equivalent model, Journal of Nano Research, Trans Tech Publ, 2019, pp.136-157.
DOI: 10.4028/www.scientific.net/jnanor.57.136
Google Scholar
[30]
F. Ebrahimi, M.R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, Journal of Vibration and Control 24(3) (2018) 549-564.
DOI: 10.1177/1077546316646239
Google Scholar
[31]
A.A. Daikh, M. Guerroudj, M. El Adjrami, A. Megueni, Thermal buckling of functionally graded sandwich beams, Advanced Materials Research, Trans Tech Publ, 2020, pp.43-59.
DOI: 10.4028/www.scientific.net/amr.1156.43
Google Scholar
[32]
R. Hamza-Cherif, M. Meradjah, M. Zidour, A. Tounsi, S. Belmahi, T. Bensattalah, Vibration analysis of nano beam using differential transform method including thermal effect, Journal of Nano Research, Trans Tech Publ, 2018, pp.1-14.
DOI: 10.4028/www.scientific.net/jnanor.54.1
Google Scholar
[33]
Z. Lv, H. Liu, Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment, Composite Structures 184 (2018) 1165-1176.
DOI: 10.1016/j.compstruct.2017.10.053
Google Scholar
[34]
A. Aria, M. Friswell, T. Rabczuk, Thermal vibration analysis of cracked nanobeams embedded in an elastic matrix using finite element analysis, Composite Structures 212 (2019) 118-128.
DOI: 10.1016/j.compstruct.2019.01.040
Google Scholar
[35]
X.P. Chang, Z. Liang, Q.Y. Liu, Buckling and post-buckling analysis of symmetrically angle-ply laminated composite beams under thermal environments, Advanced Materials Research, Trans Tech Publ, 2011, pp.182-186.
DOI: 10.4028/www.scientific.net/amr.335-336.182
Google Scholar
[36]
B. Alibeigi, Y.T. Beni, F. Mehralian, On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams, The European Physical Journal Plus 133(3) (2018) 133.
DOI: 10.1140/epjp/i2018-11954-7
Google Scholar
[37]
Y. Zhao, C. Huang, Temperature Effects on Nonlinear Vibration Behaviors of Euler-Bernoulli Beams with Different Boundary Conditions, Shock and Vibration 2018 (2018).
DOI: 10.1155/2018/9834629
Google Scholar
[38]
Y.S. Touloukian, Thermophysical properties of high temperature solid materials: elements, Macmillan1967.
Google Scholar
[39]
Y.S. Touloukian, Thermophysical properties of high temperature solid materials, Macmillan (1967).
Google Scholar
[40]
S.S. Rao, Vibration of continuous systems, Wiley Online Library2007.
Google Scholar
[41]
A.C. Eringen, Theories of nonlocal plasticity, International Journal of Engineering Science 21(7) (1983) 741-751.
DOI: 10.1016/0020-7225(83)90058-7
Google Scholar
[42]
A.C. Eringen, D. Edelen, On nonlocal elasticity, International journal of engineering science 10(3) (1972) 233-248.
DOI: 10.1016/0020-7225(72)90039-0
Google Scholar
[43]
A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics 54(9) (1983) 4703-4710.
DOI: 10.1063/1.332803
Google Scholar
[44]
S.A. Emam, A.H. Nayfeh, Postbuckling and free vibrations of composite beams, Composite Structures 88(4) (2009) 636-642.
DOI: 10.1016/j.compstruct.2008.06.006
Google Scholar
[45]
M. Eltaher, A. Alshorbagy, F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams, Composite Structures 99 (2013) 193-201.
DOI: 10.1016/j.compstruct.2012.11.039
Google Scholar
[46]
B.A. Finlayson, The method of weighted residuals and variational principles, SIAM2013.
Google Scholar
[47]
A.H. Nayfeh, Introduction to perturbation techniques.-New York, Willey & Sons (1981).
Google Scholar
[48]
A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons2008.
Google Scholar