Nonlinear Vibration and Stability Analysis of Functionally Graded Nanobeam Subjected to External Parametric Excitation and Thermal Load

Article Preview

Abstract:

Analysis of vibration stability of simply supported Euler-Bernoulli functionally graded (FG) nanobeam embedded in viscous elastic medium with thermal effect under external parametric excitation is presented in this work. An attempt has been made for the first time is investigating the effect of thermal load on dynamic behavior, amplitude response, instability region and bifurcation points of functionally graded nanobeam. Thermal loads are supposed to be uniform, linear or nonlinear distribution along the thickness direction. Nonlocal continuum theory and the principle of the minimum total potential energy are applied to derive the governing equations. The partial differential equations (PDE) are transported to the ordinary differential equations (ODE) by using the Petrov-Galerkin method and the multiple time scales method are manipulated to solve the motion equation. To study the effect of external parametric excitation and thermal effect, different temperature distributions along the thickness such as uniform, linear, and nonlinear distribution are considered. Moreover, stable and unstable regions and bifurcation points are determined. It is obtained that the thermal load can affect the amplitude response of FG nanobeam. Also, it is observed that the instability of the system is affected by the detuning parameter and the parametric excitation amplitude plays great role in the instability of system. Nanobeams are used in many devices like nanoresonators, nanosensors and nanoswitches. This paper is helpful for designing and manufacturing nanoscale structures specially nanoresonators under different thermal loads.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-132

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yamanouchi, M. Koizumi, T. Hirai, I. Shiota, Proc. First Int. Symp. on Functionally Gradient Materials, FGM Forum Tokyo, Japan, (1990).

Google Scholar

[2] F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions, Composites Part B: Engineering 78 (2015) 272-290.

DOI: 10.1016/j.compositesb.2015.03.068

Google Scholar

[3] A. Fallah, M. Aghdam, Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation, European Journal of Mechanics-A/Solids 30(4) (2011) 571-583.

DOI: 10.1016/j.euromechsol.2011.01.005

Google Scholar

[4] A. Fallah, M. Aghdam, Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation, Composites Part B: Engineering 43(3) (2012) 1523-1530.

DOI: 10.1016/j.compositesb.2011.08.041

Google Scholar

[5] E. Shahabinejad, N. Shafiei, M. Ghadiri, Influence of Temperature Change on Modal Analysis of Rotary Functionally Graded Nano-beam in Thermal Environment, Journal of Solid Mechanics Vol 10(4) (2018) 779-803.

Google Scholar

[6] X. Jia, L. Ke, X. Zhong, Y. Sun, J. Yang, S. Kitipornchai, Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory, Composite Structures 202 (2018) 625-634.

DOI: 10.1016/j.compstruct.2018.03.025

Google Scholar

[7] R.A. Shanab, M.A. Attia, S.A. Mohamed, N.A. Mohamed, Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium, Journal of Nano Research, Trans Tech Publ, 2020, pp.97-117.

DOI: 10.4028/www.scientific.net/jnanor.61.97

Google Scholar

[8] S. Merdaci, Free Vibration Analysis of Composite Material Plates" Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities, Nano Hybrids and Composites, Trans Tech Publ, 2019, pp.69-83.

DOI: 10.4028/www.scientific.net/nhc.25.69

Google Scholar

[9] Y. Huang, J. Fu, A. Liu, Dynamic instability of Euler–Bernoulli nanobeams subject to parametric excitation, Composites Part B: Engineering 164 (2019) 226-234.

DOI: 10.1016/j.compositesb.2018.11.088

Google Scholar

[10] Y.-Z. Wang, Y.-S. Wang, L.-L. Ke, Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory, Physica E: Low-dimensional Systems and Nanostructures 83 (2016) 195-200.

DOI: 10.1016/j.physe.2016.05.020

Google Scholar

[11] S. Krylov, I. Harari, Y. Cohen, Stabilization of electrostatically actuated microstructures using parametric excitation, Journal of Micromechanics and Microengineering 15(6) (2005) 1188.

DOI: 10.1088/0960-1317/15/6/009

Google Scholar

[12] M. Darabi, R. Ganesan, Non-linear vibration and dynamic instability of internally-thickness-tapered composite plates under parametric excitation, Composite Structures 176 (2017) 82-104.

DOI: 10.1016/j.compstruct.2017.04.059

Google Scholar

[13] Y.-Z. Wang, Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory, Applied Mathematical Modelling 48 (2017) 621-634.

DOI: 10.1016/j.apm.2017.04.018

Google Scholar

[14] C. Li, C.W. Lim, J. Yu, Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Materials and Structures 20(1) (2010) 015023.

DOI: 10.1088/0964-1726/20/1/015023

Google Scholar

[15] M. Ghadiri, S.H. S Hosseini, Nonlinear forced vibration of graphene/piezoelectric sandwich nanoplates subjected to a mechanical shock, Journal of Sandwich Structures & Materials (2019) 1099636219849647.

DOI: 10.1177/1099636219849647

Google Scholar

[16] A.C. Eringen, Nonlocal polar elastic continua, International journal of engineering science 10(1) (1972) 1-16.

DOI: 10.1016/0020-7225(72)90070-5

Google Scholar

[17] M.A. Eltaher, F.-A. Omar, W.S. Abdalla, A.M. Kabeel, A.E. Alshorbagy, Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects, Structural Engineering and Mechanics 76(1) (2020) 141-151.

Google Scholar

[18] R. Ansari, R. Gholami, H. Rouhi, Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Composite Structures 126 (2015) 216-226.

DOI: 10.1016/j.compstruct.2015.02.068

Google Scholar

[19] R.M. Abo-Bakr, M.A. Eltaher, M.A. Attia, Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects, Engineering with Computers (2020) 1-22.

DOI: 10.1007/s00366-020-01146-0

Google Scholar

[20] A. Farajpour, M.H. Ghayesh, H. Farokhi, A coupled nonlinear continuum model for bifurcation behaviour of fluid-conveying nanotubes incorporating internal energy loss, Microfluidics and Nanofluidics 23(3) (2019) 34.

DOI: 10.1007/s10404-019-2199-9

Google Scholar

[21] M.A. Eltaher, N.A. Mohamed, Vibration of nonlocal perforated nanobeams with general boundary conditions, Smart Structures and Systems 25(4) (2020) 501-514.

Google Scholar

[22] I. Esen, C. Özarpa, M.A. Eltaher, Free Vibration of a Cracked FG Microbeam Embedded in an Elastic Matrix and Exposed to Magnetic Field in a Thermal Environment, Composite Structures 113552.

DOI: 10.1016/j.compstruct.2021.113552

Google Scholar

[23] S.A. Emam, M.A. Eltaher, M.E. Khater, W.S. Abdalla, Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load, Applied Sciences 8(11) (2018) 2238.

DOI: 10.3390/app8112238

Google Scholar

[24] A.K. Jha, S.S. Dasgupta, Mathematical modeling of a fractionally damped nonlinear nanobeam via nonlocal continuum approach, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2019) 0954406219866467.

DOI: 10.1177/0954406219866467

Google Scholar

[25] A.A. Abdelrahman, H.E. Abd-El-Mottaleb, M.A. Eltaher, On bending analysis of perforated microbeams including the microstructure effects, Structural Engineering and Mechanics 76(6) (2020) 765.

Google Scholar

[26] N. Mohamed, S. Mohamed, M. Eltaher, Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model, Engineering with Computers (2020) 1-14.

DOI: 10.1007/s00366-020-00976-2

Google Scholar

[27] A.A. Daikh, M.S.A. Houari, M.A. Eltaher, A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates, Composite Structures (2020) 113347.

DOI: 10.1016/j.compstruct.2020.113347

Google Scholar

[28] A.A. Daikh, A. Drai, M.S.A. Houari, M.A. Eltaher, Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes, Steel and Composite Structures 36(6) (2020) 643-656.

DOI: 10.1016/j.dt.2021.09.011

Google Scholar

[29] M.A. Eltaher, N. Mohamed, S. Mohamed, L.F. Seddek, Postbuckling of curved carbon nanotubes using energy equivalent model, Journal of Nano Research, Trans Tech Publ, 2019, pp.136-157.

DOI: 10.4028/www.scientific.net/jnanor.57.136

Google Scholar

[30] F. Ebrahimi, M.R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, Journal of Vibration and Control 24(3) (2018) 549-564.

DOI: 10.1177/1077546316646239

Google Scholar

[31] A.A. Daikh, M. Guerroudj, M. El Adjrami, A. Megueni, Thermal buckling of functionally graded sandwich beams, Advanced Materials Research, Trans Tech Publ, 2020, pp.43-59.

DOI: 10.4028/www.scientific.net/amr.1156.43

Google Scholar

[32] R. Hamza-Cherif, M. Meradjah, M. Zidour, A. Tounsi, S. Belmahi, T. Bensattalah, Vibration analysis of nano beam using differential transform method including thermal effect, Journal of Nano Research, Trans Tech Publ, 2018, pp.1-14.

DOI: 10.4028/www.scientific.net/jnanor.54.1

Google Scholar

[33] Z. Lv, H. Liu, Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment, Composite Structures 184 (2018) 1165-1176.

DOI: 10.1016/j.compstruct.2017.10.053

Google Scholar

[34] A. Aria, M. Friswell, T. Rabczuk, Thermal vibration analysis of cracked nanobeams embedded in an elastic matrix using finite element analysis, Composite Structures 212 (2019) 118-128.

DOI: 10.1016/j.compstruct.2019.01.040

Google Scholar

[35] X.P. Chang, Z. Liang, Q.Y. Liu, Buckling and post-buckling analysis of symmetrically angle-ply laminated composite beams under thermal environments, Advanced Materials Research, Trans Tech Publ, 2011, pp.182-186.

DOI: 10.4028/www.scientific.net/amr.335-336.182

Google Scholar

[36] B. Alibeigi, Y.T. Beni, F. Mehralian, On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams, The European Physical Journal Plus 133(3) (2018) 133.

DOI: 10.1140/epjp/i2018-11954-7

Google Scholar

[37] Y. Zhao, C. Huang, Temperature Effects on Nonlinear Vibration Behaviors of Euler-Bernoulli Beams with Different Boundary Conditions, Shock and Vibration 2018 (2018).

DOI: 10.1155/2018/9834629

Google Scholar

[38] Y.S. Touloukian, Thermophysical properties of high temperature solid materials: elements, Macmillan1967.

Google Scholar

[39] Y.S. Touloukian, Thermophysical properties of high temperature solid materials, Macmillan (1967).

Google Scholar

[40] S.S. Rao, Vibration of continuous systems, Wiley Online Library2007.

Google Scholar

[41] A.C. Eringen, Theories of nonlocal plasticity, International Journal of Engineering Science 21(7) (1983) 741-751.

DOI: 10.1016/0020-7225(83)90058-7

Google Scholar

[42] A.C. Eringen, D. Edelen, On nonlocal elasticity, International journal of engineering science 10(3) (1972) 233-248.

DOI: 10.1016/0020-7225(72)90039-0

Google Scholar

[43] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics 54(9) (1983) 4703-4710.

DOI: 10.1063/1.332803

Google Scholar

[44] S.A. Emam, A.H. Nayfeh, Postbuckling and free vibrations of composite beams, Composite Structures 88(4) (2009) 636-642.

DOI: 10.1016/j.compstruct.2008.06.006

Google Scholar

[45] M. Eltaher, A. Alshorbagy, F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams, Composite Structures 99 (2013) 193-201.

DOI: 10.1016/j.compstruct.2012.11.039

Google Scholar

[46] B.A. Finlayson, The method of weighted residuals and variational principles, SIAM2013.

Google Scholar

[47] A.H. Nayfeh, Introduction to perturbation techniques.-New York, Willey & Sons (1981).

Google Scholar

[48] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons2008.

Google Scholar