[1]
M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today 10(1-2) (2007) 20-27.
Google Scholar
[2]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696) (2004) 666-669,.
DOI: 10.1126/science.1102896
Google Scholar
[3]
J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3(4) (2008) 206-9,.
DOI: 10.1038/nnano.2008.58
Google Scholar
[4]
K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, I.I. Barbolina, P. Blake, T.J. Booth, D. Jiang, J. Giesbers, E.W. Hill, A.K. Geim, Electronic properties of graphene, Physica Status Solidi b 244(11) (2007) 4106-4111, https://doi.org/10.1002/pssb.200776208.
DOI: 10.1002/pssb.200776208
Google Scholar
[5]
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8(3) (2008) 902-907, https://doi.org/10.1021/nl0731872.
DOI: 10.1021/nl0731872
Google Scholar
[6]
K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab & K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200,.
DOI: 10.1038/nature11458
Google Scholar
[7]
S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong & S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology 5 (2010) 574-578,.
DOI: 10.1038/nnano.2010.132
Google Scholar
[8]
T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Applied Physics Letters 102 (2013) 023112, https://doi.org/10.1063/1.4776707.
DOI: 10.1063/1.4776707
Google Scholar
[9]
K.R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward Ubiquitous Environmental Gas Sensors-Capitalizing on the Promise of Graphene, Environmental Science & Technology 44(4) (2010) 1167-1176, https://doi.org/10.1021/es902659d.
DOI: 10.1021/es902659d
Google Scholar
[10]
S.A. Naghdehforooshha, G. Moradi, Plasmonic wave propagation mode analysis of single and multi-layer graphene-pec structures, Optik 200 (2020) 163365, https://doi.org/10.1016/j.ijleo.2019.163365.
DOI: 10.1016/j.ijleo.2019.163365
Google Scholar
[11]
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson & K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials 6 (2007) 652-655,.
DOI: 10.1038/nmat1967
Google Scholar
[12]
P. Dutta and P.M. Horn, Low-frequency fluctuations in solids: 1/f noise, Reviews of Modern Physics 53 (1981) 497.
Google Scholar
[13]
C.O. Park, J.W. Fergus, N. Miura, J. Park, A. Choi, Solid-state electrochemical gas sensors, Ionics 15(3) (2009) 261-284, https://doi.org/10.1007/s11581-008-0300-6.
DOI: 10.1007/s11581-008-0300-6
Google Scholar
[14]
X. Chen, B. Chen, Macroscopic and Spectroscopic Investigations of the Adsorption of Nitroaromatic Compounds on Graphene Oxide, Reduced Graphene Oxide, and Graphene Nanosheets, Environmental Science & Technology 49(10) (2015) 6181-6189, https://doi.org/10.1021/es5054946.
DOI: 10.1021/es5054946
Google Scholar
[15]
J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, and X. Tang, Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites, Optics Letters 42(5) (2017) 911-914, https://doi.org/10.1364/OL.42.000911.
DOI: 10.1364/ol.42.000911
Google Scholar
[16]
P. Di Sia, About the Influence of Temperature in Single-Walled Carbon Nanotubes: Details from a new Drude-Lorentz-like Model, Applied Surface Science 275 (2013) 384-388.
DOI: 10.1016/j.apsusc.2012.10.132
Google Scholar
[17]
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene Mode-Locked Ultrafast Laser, ACS Nano 4(2) (2010) 803-810, https://doi.org/10.1021/nn901703e.
DOI: 10.1021/nn901703e
Google Scholar
[18]
P. Di Sia, Present and Future of Nanotechnologies: Peculiarities, Phenomenology, Theoretical Modelling, Perspectives, Reviews in Theoretical Science 2(2) (2014) 146-180, https://doi.org/10.1166/rits.2014.1019.
DOI: 10.1166/rits.2014.1019
Google Scholar
[19]
P. Di Sia, An Analytical Transport Model for Nanomaterials, Journal of Computational and Theoretical Nanoscience 8 (2011) 84-89.
Google Scholar
[20]
P. Di Sia, An Analytical Transport Model for Nanomaterials: The Quantum Version, Journal of Computational and Theoretical Nanoscience 9(1) (2012) 31-34.
DOI: 10.1166/jctn.2012.1992
Google Scholar
[21]
P. Di Sia, Relativistic nano-transport and artificial neural networks: details by a new analytical model, International Journal of Artificial Intelligence and Mechatronics (IJAIM) 3(3) (2014) 96-100.
Google Scholar
[22]
P. Di Sia, A new analytical transport model for (nano)physics, International Research Journal of Engineering and Technology (IRJET) 2(7) (2015) 1-4.
Google Scholar
[23]
P. Di Sia, Quantum-Relativistic Velocities in Nano-Transport, Applied Surface Science 446 (2018) 187-190, https://doi.org/10.1016/j.apsusc.2018.01.273.
DOI: 10.1016/j.apsusc.2018.01.273
Google Scholar
[24]
J.M. Marulanda, A. Srivastava, Carrier Density and Effective Mass Calculation for carbon Nanotubes, Physica Status Solidi (b) 245(11) (2008) 2558-2562.
DOI: 10.1002/pssb.200844259
Google Scholar
[25]
P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Nanotube Nanodevice, Science 278(5335) (1997) 100-102.
DOI: 10.1126/science.278.5335.100
Google Scholar
[26]
H. Altan, F. Huang, J.F. Federici, A. Lan, and H. Grebel, Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy, Journal of Applied Physice 96 (2004) 6685-6689.
DOI: 10.1063/1.1805720
Google Scholar
[27]
I. Pirozhenko, A. Lambrecht, Influence of slab thickness on the Casimir force, Physical Review A 77 (2008) 013811-013818.
DOI: 10.1103/physreva.77.013811
Google Scholar
[28]
J.B. Baxter, C.A. Schmuttenmaer, Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy, Journal of Physical Chemistry B 110 (2006) 25229-25239.
DOI: 10.1021/jp064399a
Google Scholar
[29]
P. Parkinson, H.J. Joyce, Q. Gao, H.H. Tan, X. Zhang, J. Zou, C. Jagadish, L.M. Herz, and M.B. Johnston, Carrier Lifetime and Mobility Enhancement in Nearly Defect-Free Core-Shell Nanowires Measured Using Time-Resolved Terahertz Spectroscopy, Nano Letters 9(9) (2009) 3349-3353.
DOI: 10.1021/nl9016336
Google Scholar
[30]
C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48(8) (2010) 2127-2150, https://doi.org/10.1016/j.carbon.2010.01.058.
DOI: 10.1016/j.carbon.2010.01.058
Google Scholar
[31]
M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Fracture and Fatigue in Graphene Nanocomposites, Small 6(2) (2010) 179-183.
DOI: 10.1002/smll.200901480
Google Scholar
[32]
Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis 22(10) (2010) 1027-1036.
DOI: 10.1002/elan.200900571
Google Scholar
[33]
J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced Graphene Oxide Molecular Sensors, Nano Letters 8(10) (2008) 3137-3140.
DOI: 10.1021/nl8013007
Google Scholar
[34]
M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing, Trends in Analytical Chemistry 29(9) (2010) 954-965,.
DOI: 10.1016/j.trac.2010.05.011
Google Scholar
[35]
P. Di Sia, Mathematics and Physics for Nanotechnology: Technical Tools and Modelling, first ed., CRC Press - Taylor & Francis Group, Jenny Stanford Publishing, Singapore, (2019).
Google Scholar