New Results on Diffusion in Graphene Nanostructures for Sensoristics

Article Preview

Abstract:

Graphene has particularly interesting chemical and physical properties, including high chemical and mechanical resistance, excellent thermal and electric transport, high transparency. It combines the peculiarity of being an extremely light material with exceptional mechanical strength properties. Micro/nanoelectronics represents one of the key enabling technologies (KETs) of the future; it is the basis of innovation and competitiveness of almost all scientific and applicative sectors. Activities involving it are aimed at the development of new materials, processes, devices and technologies in a wide range of sectors, involving quantum information manipulation, multi-functional platforms, advanced materials, devices on flexible substrates. In the field of sensoristics, it is possible to create devices for applications in most sectors of global interest, such as punctual sensors, biosensors, specific transducers, multisensoristic systems, flexible sensoristic systems, multifunctional systems, advanced MEMS/MOEMS technologies for sensoristics, micro/nanoactuators, devices for energy convertion, gravimetric-electrochemical sensors. The paper provides an interesting overview of the possible applications of graphene in relation to its mechanical, thermal and optical properties, and relatively to the gas and biological sensoristic aspects, so as interesting informations for the increase in nanobio-devices performance by last efforts in theoretical nanophysics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-72

Citation:

Online since:

October 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today 10(1-2) (2007) 20-27.

Google Scholar

[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696) (2004) 666-669,.

DOI: 10.1126/science.1102896

Google Scholar

[3] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3(4) (2008) 206-9,.

DOI: 10.1038/nnano.2008.58

Google Scholar

[4] K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, I.I. Barbolina, P. Blake, T.J. Booth, D. Jiang, J. Giesbers, E.W. Hill, A.K. Geim, Electronic properties of graphene, Physica Status Solidi b 244(11) (2007) 4106-4111, https://doi.org/10.1002/pssb.200776208.

DOI: 10.1002/pssb.200776208

Google Scholar

[5] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8(3) (2008) 902-907, https://doi.org/10.1021/nl0731872.

DOI: 10.1021/nl0731872

Google Scholar

[6] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab & K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200,.

DOI: 10.1038/nature11458

Google Scholar

[7] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong & S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology 5 (2010) 574-578,.

DOI: 10.1038/nnano.2010.132

Google Scholar

[8] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Applied Physics Letters 102 (2013) 023112, https://doi.org/10.1063/1.4776707.

DOI: 10.1063/1.4776707

Google Scholar

[9] K.R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward Ubiquitous Environmental Gas Sensors-Capitalizing on the Promise of Graphene, Environmental Science & Technology 44(4) (2010) 1167-1176, https://doi.org/10.1021/es902659d.

DOI: 10.1021/es902659d

Google Scholar

[10] S.A. Naghdehforooshha, G. Moradi, Plasmonic wave propagation mode analysis of single and multi-layer graphene-pec structures, Optik 200 (2020) 163365, https://doi.org/10.1016/j.ijleo.2019.163365.

DOI: 10.1016/j.ijleo.2019.163365

Google Scholar

[11] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson & K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials 6 (2007) 652-655,.

DOI: 10.1038/nmat1967

Google Scholar

[12] P. Dutta and P.M. Horn, Low-frequency fluctuations in solids: 1/f noise, Reviews of Modern Physics 53 (1981) 497.

Google Scholar

[13] C.O. Park, J.W. Fergus, N. Miura, J. Park, A. Choi, Solid-state electrochemical gas sensors, Ionics 15(3) (2009) 261-284, https://doi.org/10.1007/s11581-008-0300-6.

DOI: 10.1007/s11581-008-0300-6

Google Scholar

[14] X. Chen, B. Chen, Macroscopic and Spectroscopic Investigations of the Adsorption of Nitroaromatic Compounds on Graphene Oxide, Reduced Graphene Oxide, and Graphene Nanosheets, Environmental Science & Technology 49(10) (2015) 6181-6189, https://doi.org/10.1021/es5054946.

DOI: 10.1021/es5054946

Google Scholar

[15] J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, and X. Tang, Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites, Optics Letters 42(5) (2017) 911-914, https://doi.org/10.1364/OL.42.000911.

DOI: 10.1364/ol.42.000911

Google Scholar

[16] P. Di Sia, About the Influence of Temperature in Single-Walled Carbon Nanotubes: Details from a new Drude-Lorentz-like Model, Applied Surface Science 275 (2013) 384-388.

DOI: 10.1016/j.apsusc.2012.10.132

Google Scholar

[17] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene Mode-Locked Ultrafast Laser, ACS Nano 4(2) (2010) 803-810, https://doi.org/10.1021/nn901703e.

DOI: 10.1021/nn901703e

Google Scholar

[18] P. Di Sia, Present and Future of Nanotechnologies: Peculiarities, Phenomenology, Theoretical Modelling, Perspectives, Reviews in Theoretical Science 2(2) (2014) 146-180, https://doi.org/10.1166/rits.2014.1019.

DOI: 10.1166/rits.2014.1019

Google Scholar

[19] P. Di Sia, An Analytical Transport Model for Nanomaterials, Journal of Computational and Theoretical Nanoscience 8 (2011) 84-89.

Google Scholar

[20] P. Di Sia, An Analytical Transport Model for Nanomaterials: The Quantum Version, Journal of Computational and Theoretical Nanoscience 9(1) (2012) 31-34.

DOI: 10.1166/jctn.2012.1992

Google Scholar

[21] P. Di Sia, Relativistic nano-transport and artificial neural networks: details by a new analytical model, International Journal of Artificial Intelligence and Mechatronics (IJAIM) 3(3) (2014) 96-100.

Google Scholar

[22] P. Di Sia, A new analytical transport model for (nano)physics, International Research Journal of Engineering and Technology (IRJET) 2(7) (2015) 1-4.

Google Scholar

[23] P. Di Sia, Quantum-Relativistic Velocities in Nano-Transport, Applied Surface Science 446 (2018) 187-190, https://doi.org/10.1016/j.apsusc.2018.01.273.

DOI: 10.1016/j.apsusc.2018.01.273

Google Scholar

[24] J.M. Marulanda, A. Srivastava, Carrier Density and Effective Mass Calculation for carbon Nanotubes, Physica Status Solidi (b) 245(11) (2008) 2558-2562.

DOI: 10.1002/pssb.200844259

Google Scholar

[25] P.G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Nanotube Nanodevice, Science 278(5335) (1997) 100-102.

DOI: 10.1126/science.278.5335.100

Google Scholar

[26] H. Altan, F. Huang, J.F. Federici, A. Lan, and H. Grebel, Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy, Journal of Applied Physice 96 (2004) 6685-6689.

DOI: 10.1063/1.1805720

Google Scholar

[27] I. Pirozhenko, A. Lambrecht, Influence of slab thickness on the Casimir force, Physical Review A 77 (2008) 013811-013818.

DOI: 10.1103/physreva.77.013811

Google Scholar

[28] J.B. Baxter, C.A. Schmuttenmaer, Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy, Journal of Physical Chemistry B 110 (2006) 25229-25239.

DOI: 10.1021/jp064399a

Google Scholar

[29] P. Parkinson, H.J. Joyce, Q. Gao, H.H. Tan, X. Zhang, J. Zou, C. Jagadish, L.M. Herz, and M.B. Johnston, Carrier Lifetime and Mobility Enhancement in Nearly Defect-Free Core-Shell Nanowires Measured Using Time-Resolved Terahertz Spectroscopy, Nano Letters 9(9) (2009) 3349-3353.

DOI: 10.1021/nl9016336

Google Scholar

[30] C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48(8) (2010) 2127-2150, https://doi.org/10.1016/j.carbon.2010.01.058.

DOI: 10.1016/j.carbon.2010.01.058

Google Scholar

[31] M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Fracture and Fatigue in Graphene Nanocomposites, Small 6(2) (2010) 179-183.

DOI: 10.1002/smll.200901480

Google Scholar

[32] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis 22(10) (2010) 1027-1036.

DOI: 10.1002/elan.200900571

Google Scholar

[33] J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced Graphene Oxide Molecular Sensors, Nano Letters 8(10) (2008) 3137-3140.

DOI: 10.1021/nl8013007

Google Scholar

[34] M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing, Trends in Analytical Chemistry 29(9) (2010) 954-965,.

DOI: 10.1016/j.trac.2010.05.011

Google Scholar

[35] P. Di Sia, Mathematics and Physics for Nanotechnology: Technical Tools and Modelling, first ed., CRC Press - Taylor & Francis Group, Jenny Stanford Publishing, Singapore, (2019).

Google Scholar