[1]
Miyamoto, M., Kaysser, W.A., Rabin, B.H., Functionally Graded Materials Design, Processing and Applications, (1999).
Google Scholar
[2]
Suresh, S., Mortensen, A., Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London, (1998).
Google Scholar
[3]
Öchsner, A., Murch, G.E. and Lemos, M.J.S., Cellular and Porous Materials, WILEY-VCH, 398-417, (2008).
Google Scholar
[4]
Hadj Mostefa. A., Merdaci. S, and Mahmoudi. N., An Overview of Functionally Graded Materials «FGM», Proceedings of the Third International Symposium on Materials and Sustainable Development, ISBN 978-3-319-89706-6, 267–278, (2018).
DOI: 10.1007/978-3-319-89707-3_30
Google Scholar
[5]
Zhu, J. Lai, Z. Yin, Z. Jeon, J. and Lee, S., Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys, 68(1-3), 130-135, (2001).
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[6]
Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M., Free vibration analysis of layered functionally graded beams with experimental validation, Mater. Des, 36, 182-190, (2012).
DOI: 10.1016/j.matdes.2011.10.049
Google Scholar
[7]
Shimpi, R., Patel, H., Free vibrations of plate using two variable refined plate theory, J. Sound Vib, 296, 979–999, (2006).
DOI: 10.1016/j.jsv.2006.03.030
Google Scholar
[8]
Jha, D.K., Kant, T. and Singh, R.K., Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates, Nucl. Eng. Des., 250, 8–13, (2012).
DOI: 10.1016/j.nucengdes.2012.05.001
Google Scholar
[9]
Wattanasakulpong, N. and Ungbhakorn, V., Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerosp.Sci. Technol, 32(1), 111-120, (2014).
DOI: 10.1016/j.ast.2013.12.002
Google Scholar
[10]
Merdaci, S., Belmahi, S., Belghoul, H., Hadj Mostefa, A., Free Vibration Analysis of Functionally Graded Plates FG with Porosities, International Journal of Engineering Research & Technology, 8(03), 143-147, (2019).
DOI: 10.17577/ijertv8is030098
Google Scholar
[11]
Merdaci, S., Free Vibration Analysis of Composite Material Plates Case of a Typical Functionally Graded FG Plates Ceramic/Metal, with Porosities, Nano Hybrids and Composites (NHC), 25, 69-83, (2019).
DOI: 10.4028/www.scientific.net/nhc.25.69
Google Scholar
[12]
Merdaci. S, Hadj Mostefa .A, Merazi .M, Belghoul .H, Hellal .H, Boutaleb .S, Effects of even pores distribution of functionally graded plate porous rectangular and square,, Procedia Structural Integrity, 26, 35–45, (2020).
DOI: 10.1016/j.prostr.2020.06.006
Google Scholar
[13]
Merdaci. S, Hadj Mostefa. A, Beldjelili. Y, Merazi.M, Boutaleb. S, Hellal. H, Analytical solution for static bending analysis of functionally graded plates with porosities,, Frattura ed Integrità Strutturale, 55, 65-75, (2021).
DOI: 10.3221/igf-esis.55.05
Google Scholar
[14]
Merdaci S; Hadj Mostefa A; Merazi M; Belghoul H; Boutaleb S; Hellal H, Free Vibration Analysis of Ceramic-Metal Functionally Graded rectangular Solar Plates with Porosities Using of High Order Shear Theory: Solar Plate FG Composed of (Al/Al2O3) and (Al/ZrO2) Influence by Porosity,, Institute of Electrical and Electronics Engineers (IEEE - Journals & Conference Proceedings), 1-5, (2021).
DOI: 10.1109/irec48820.2020.9310392
Google Scholar
[15]
Daneshmehr, A., Rajabpoor, A., Hadi, A., Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, 95, 23-35 (2015).
DOI: 10.1016/j.ijengsci.2015.05.011
Google Scholar
[16]
Karami, B., Shahsavari, D., Janghorban, M., Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on non-local strain gradient theory and four variable refined plate theory, Mech. Adv. Mat. Struct, (2017).
DOI: 10.1080/15376494.2017.1323143
Google Scholar
[17]
Shahsavari,D., Karami, B., Mansouri, S., Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Eur. J. Mech. A, Solids, (2017).
DOI: 10.1016/j.euromechsol.2017.09.004
Google Scholar
[18]
Eringen, A.C., Edelen, D.G.B.,On nonlocal elasticity, Int. J.Eng.Sci, 10, 233–248, (1972).
Google Scholar
[19]
Eringen, A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl.Phys, 54(9), 4703–4710, (1983).
DOI: 10.1063/1.332803
Google Scholar
[20]
Lu, P., Zhang, P., Lee, H., Wang, C., Reddy, J., Actes de la Royal Society A, 463, 3225–3240, (2007).
Google Scholar
[21]
Murmu, T., Pradhan, S., Physica E: Systèmes à basse dimension et Nanostructures ,41(8), 1628–1633, (2009).
Google Scholar
[22]
Merdaci. S, Hadj Mostefa. A, Boutaleb. S, Hellal. H, Free Vibration Analysis of Functionally Graded FG Nano-plates with Porosities,, Journal of Nano Research, Vol.64, pp.61-74, (2020).
DOI: 10.4028/www.scientific.net/jnanor.64.61
Google Scholar
[23]
Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S., Rabczuk, T., Size-dependent free flexural vibration behavior of functionally graded nanoplates, Computational Materials Science, 65, 74-80, (2012).
DOI: 10.1016/j.commatsci.2012.06.031
Google Scholar
[24]
Salehipour, H., Nahvi, H., Shahidi, A., Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Composite Structures, 124, 283-291, (2015).
DOI: 10.1016/j.compstruct.2015.01.015
Google Scholar
[25]
Aghababaei, R., Reddy, J.N., Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326, 277–289, (2009).
DOI: 10.1016/j.jsv.2009.04.044
Google Scholar
[26]
Zargaripoor, A., Daneshmehr, A., Isaac Hosseini, I., Rajabpoor, A., Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method, Journal of Computational Applied Mechanics, 49(1), 86-101, (2018).
DOI: 10.1016/j.ijengsci.2015.05.011
Google Scholar
[27]
Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H., Benyoucef, S., Two new refined shear displacement models for functionally graded sandwich plates, Arch Appl Mech, 81, 1507-1522, (2011).
DOI: 10.1007/s00419-010-0497-5
Google Scholar
[28]
Reddy, J. N., and Phan, N. D. "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory, J. Sound Vibrat, 98, 157–170, (1985).
DOI: 10.1016/0022-460x(85)90383-9
Google Scholar