[1]
A. Kawalkar. A Comprehensive Review on Osteoporosis. J. Trauma, vol. 10, no. 1, p.3–12 (2015).
Google Scholar
[2]
M. E. Hassan, J. Bai, and D. Q. Dou. Biopolymers; Definition, classification and applications. Egyptian Journal of Chemistry, vol. 62, no. 9. p.1725–1737 (2019).
Google Scholar
[3]
S. Selvalakshmi, T. Mathavan, S. Selvasekarapandian, and M. Premalatha. Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics (Kiel)., vol. 23, no. 10, p.2791–2797 (2017).
DOI: 10.1007/s11581-016-1952-2
Google Scholar
[4]
J. W. Rhim and P. Kanmani. Synthesis and characterization of biopolymer agar mediated gold nanoparticles. Mater. Lett., vol. 141, p.114–117 (2015).
DOI: 10.1016/j.matlet.2014.11.069
Google Scholar
[5]
M. S. H. Al-Furjan, M. Habibi, J. Ni, D. won Jung, and A. Tounsi. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng. Comput., no. 0123456789 (2020).
DOI: 10.1007/s00366-020-01200-x
Google Scholar
[6]
S. A. & A. T. Ehsan Arshid, Mohammad Khorasani, Zeinab Soleimani-Javid. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput., (2021).
DOI: 10.1007/s00366-021-01382-y
Google Scholar
[7]
X. Huang, H. Hao, K. Oslub, M. Habibi, and A. Tounsi. Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng. Comput., (2021).
DOI: 10.1007/s00366-021-01399-3
Google Scholar
[8]
M. S. H. Al-Furjan, A. hatami, M. Habibi, L. Shan, and A. Tounsi. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos. Struct., vol. 257, p.113150 (2021).
DOI: 10.1016/j.compstruct.2020.113150
Google Scholar
[9]
M. Lahaye and C. Rochas. Chemical structure and physico-chemical properties of agar. Hydrobiologia, vol. 221, no. 1, p.137–148 (1991).
DOI: 10.1007/bf00028370
Google Scholar
[10]
T. Rajesh Kumar Dora, S. Ghosh, and R. Damodar. Synthesis and evaluation of physical properties of Agar biopolymer film coating-an alternative for food packaging industry. Mater. Res. Express, vol. 7, no. 9 (2020).
DOI: 10.1088/2053-1591/abb7ac
Google Scholar
[11]
K.H.B. Rachid Zerrouki, Abdelkader Karas, Mohamed Zidour, Abdelmoumen Anis Bousahla, Abdelouahed Tounsi, Fouad Bourada, Abdeldjebbar Tounsi. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct. Eng. Mech., vol. 78, no. 2, p.117–124 (2021).
Google Scholar
[12]
J. Jang and P. Jia. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering, vol. 2020. (2020).
DOI: 10.1155/2020/1465709
Google Scholar
[13]
M. Dosta, K. Jarolin, and P. Gurikov. Modelling of mechanical behavior of biopolymer alginate aerogels using the bonded-particle model. Molecules, vol. 24, no. 14, p.1–15 (2019).
DOI: 10.3390/molecules24142543
Google Scholar
[14]
C. Araki. Structure of the Agarose Constituent of Agar-agar. Bull. Chem. Soc. Jpn., vol. 29, no. 4, p.543–544 (1956).
DOI: 10.1246/bcsj.29.543
Google Scholar
[15]
S. Xia, L. Zhang, A. Davletshin, Z. Li, J. You, and S. Tan. Application of polysaccharide biopolymer in petroleum recovery. Polymers, vol. 12, no. 9. p.1–36 (2020).
DOI: 10.3390/polym12091860
Google Scholar
[16]
S. Smitha and A. Sachan. Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int. J. Geotech. Eng., vol. 10, no. 4, p.387–400 (2016).
DOI: 10.1080/19386362.2016.1152674
Google Scholar
[17]
R. Sarkar and T. K. Kundu. Density functional theory studies on PVDF/ionic liquid composite systems. J. Chem. Sci., vol. 130, no. 8 (2018).
DOI: 10.1007/s12039-018-1522-4
Google Scholar
[18]
S. PAL and T. K. KUNDU. DFT-based inhibitor and promoter selection criteria for pentagonal dodecahedron methane hydrate cage. J. Chem. Sci., vol. 125, no. 5, p.1259–1266 (2013).
DOI: 10.1007/s12039-013-0470-2
Google Scholar
[19]
S. Pal and T. K. Kundu. Stability Analysis and Frontier Orbital Study of Different Glycol and Water Complex. ISRN Phys. Chem., vol. 2013, p.1–16 (2013).
DOI: 10.1155/2013/753139
Google Scholar
[20]
Gaussian 09 Revision(B.01),, (Gaussian Inc. Wallingford CT) (2010).
Google Scholar
[21]
S. U. D. Shamim et al., A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8). J. Mol. Model., vol. 26, no. 6, (2020).
DOI: 10.1007/s00894-020-04419-z
Google Scholar
[22]
D. Farmanzadeh, A. Soltanabadi, and S. Yeganegi. DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides. J. Chinese Chem. Soc., vol. 60, no. 5, p.551–558 (2013).
DOI: 10.1002/jccs.201200400
Google Scholar
[23]
S. Prabhakaran and M. J. M. Jaffar. Vibrational analysis, ab initio hf and DFT studies of 2,4,6-Trimethyl phenol. Indian J. Pure Appl. Phys., vol. 56, no. 2, p.119–127 (2018).
Google Scholar
[24]
M. A. Mumit, T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. Paul, and M. C. Sheikh. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct., vol. 1220, p.128715 (2020).
DOI: 10.1016/j.molstruc.2020.128715
Google Scholar
[25]
T. Abbaz, A. Bendjeddou, and D. Villemin. Molecular orbital studies ( hardness , chemical potential , electro negativity and electrophilicity ) of TTFs conjugated between. Int. J. Adv. Sci. Eng. Technol., vol. 5, no. 2, p.5150–5161 (2018).
Google Scholar
[26]
M. M. Sanagi et al., Agarose- and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century. Journal of Separation Science, vol. 39, no. 6. p.1152–1159 (2016).
DOI: 10.1002/jssc.201501207
Google Scholar
[27]
L. Altomare et al., Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, vol. 41, no. 6. p.337–359, (2018).
DOI: 10.1177/0391398818765323
Google Scholar
[28]
Y. Huang, C. Rong, R. Zhang, and S. Liu. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J. Mol. Model., vol. 23, no. 1 (2017).
DOI: 10.1007/s00894-016-3175-x
Google Scholar
[29]
L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput., vol. 8, no. 5, p.1515–1531 (2012).
DOI: 10.1021/ct2009363
Google Scholar
[30]
L. Goerigk and S. Grimme. Double-hybrid density functionals provide a balanced description of excited 1La and 1Lb states in polycyclic aromatic hydrocarbons. J. Chem. Theory Comput., vol. 7, no. 10, p.3272–3277 (2011).
DOI: 10.1021/ct200380v
Google Scholar
[31]
L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S. Grimme. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys., vol. 19, no. 48, p.32184–32215 (2017).
DOI: 10.1039/c7cp04913g
Google Scholar
[32]
D. Intrieri et al., Indoles from Alkynes and Aryl Azides: Scope and Theoretical Assessment of Ruthenium Porphyrin-Catalyzed Reactions. Chem. - A Eur. J., vol. 25, no. 72, p.16591–16605 (2019).
DOI: 10.1002/chem.201904224
Google Scholar
[33]
A. Soncini, A. M. Teale, T. Helgaker, F. De Proft, and D. J. Tozer. Maps of current density using density-functional methods. J. Chem. Phys., vol. 129, no. 7 (2008).
DOI: 10.1063/1.2969104
Google Scholar