Electronic, Vibrational, and Structural Study of Polysaccharide Agar-Agar Biopolymer

Article Preview

Abstract:

Polysaccharide biopolymer Agar-Agar extracted from red algae is a natural and biodegradable polymer. It is a combination of agarose (a neutral and linear polymer, with repeated units of agarobiose) and a heterogeneous mixture of agaropectin (a charged sulfated polymer). In this study, a comparative study of structural vibrational and electrochemical properties of agar-agar biopolymer with two different methods HF (Hartree-Fock) and DFT (Density Functional Theory) using a basis set 631+G (d, p) is performed. The comparative structural study of agar-agar biopolymer by HF and DFT method has been carried out to calculate the stability of the molecule. The thermionic properties and Mulliken charge distribution are analysed to deliver a quantitative study of partial atomic charge distribution. The overall vibrational analysis of primal modes of the biopolymer has been studied using FTIR analysis. Based on highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) composition and energies, various chemical parameters of the biopolymer have been evaluated. The Physico-chemical properties of this polysaccharide show a strong correlation with its optimized structure. Agar-agar has its application in the electrochemical, biotechnological, and pharmaceutical fields, as a stabilizer and gelling material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-46

Citation:

Online since:

October 2021

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kawalkar. A Comprehensive Review on Osteoporosis. J. Trauma, vol. 10, no. 1, p.3–12 (2015).

Google Scholar

[2] M. E. Hassan, J. Bai, and D. Q. Dou. Biopolymers; Definition, classification and applications. Egyptian Journal of Chemistry, vol. 62, no. 9. p.1725–1737 (2019).

Google Scholar

[3] S. Selvalakshmi, T. Mathavan, S. Selvasekarapandian, and M. Premalatha. Study on NH4I composition effect in agar–agar-based biopolymer electrolyte. Ionics (Kiel)., vol. 23, no. 10, p.2791–2797 (2017).

DOI: 10.1007/s11581-016-1952-2

Google Scholar

[4] J. W. Rhim and P. Kanmani. Synthesis and characterization of biopolymer agar mediated gold nanoparticles. Mater. Lett., vol. 141, p.114–117 (2015).

DOI: 10.1016/j.matlet.2014.11.069

Google Scholar

[5] M. S. H. Al-Furjan, M. Habibi, J. Ni, D. won Jung, and A. Tounsi. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng. Comput., no. 0123456789 (2020).

DOI: 10.1007/s00366-020-01200-x

Google Scholar

[6] S. A. & A. T. Ehsan Arshid, Mohammad Khorasani, Zeinab Soleimani-Javid. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput., (2021).

DOI: 10.1007/s00366-021-01382-y

Google Scholar

[7] X. Huang, H. Hao, K. Oslub, M. Habibi, and A. Tounsi. Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng. Comput., (2021).

DOI: 10.1007/s00366-021-01399-3

Google Scholar

[8] M. S. H. Al-Furjan, A. hatami, M. Habibi, L. Shan, and A. Tounsi. On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos. Struct., vol. 257, p.113150 (2021).

DOI: 10.1016/j.compstruct.2020.113150

Google Scholar

[9] M. Lahaye and C. Rochas. Chemical structure and physico-chemical properties of agar. Hydrobiologia, vol. 221, no. 1, p.137–148 (1991).

DOI: 10.1007/bf00028370

Google Scholar

[10] T. Rajesh Kumar Dora, S. Ghosh, and R. Damodar. Synthesis and evaluation of physical properties of Agar biopolymer film coating-an alternative for food packaging industry. Mater. Res. Express, vol. 7, no. 9 (2020).

DOI: 10.1088/2053-1591/abb7ac

Google Scholar

[11] K.H.B. Rachid Zerrouki, Abdelkader Karas, Mohamed Zidour, Abdelmoumen Anis Bousahla, Abdelouahed Tounsi, Fouad Bourada, Abdeldjebbar Tounsi. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct. Eng. Mech., vol. 78, no. 2, p.117–124 (2021).

Google Scholar

[12] J. Jang and P. Jia. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils. Advances in Materials Science and Engineering, vol. 2020. (2020).

DOI: 10.1155/2020/1465709

Google Scholar

[13] M. Dosta, K. Jarolin, and P. Gurikov. Modelling of mechanical behavior of biopolymer alginate aerogels using the bonded-particle model. Molecules, vol. 24, no. 14, p.1–15 (2019).

DOI: 10.3390/molecules24142543

Google Scholar

[14] C. Araki. Structure of the Agarose Constituent of Agar-agar. Bull. Chem. Soc. Jpn., vol. 29, no. 4, p.543–544 (1956).

DOI: 10.1246/bcsj.29.543

Google Scholar

[15] S. Xia, L. Zhang, A. Davletshin, Z. Li, J. You, and S. Tan. Application of polysaccharide biopolymer in petroleum recovery. Polymers, vol. 12, no. 9. p.1–36 (2020).

DOI: 10.3390/polym12091860

Google Scholar

[16] S. Smitha and A. Sachan. Use of agar biopolymer to improve the shear strength behavior of sabarmati sand. Int. J. Geotech. Eng., vol. 10, no. 4, p.387–400 (2016).

DOI: 10.1080/19386362.2016.1152674

Google Scholar

[17] R. Sarkar and T. K. Kundu. Density functional theory studies on PVDF/ionic liquid composite systems. J. Chem. Sci., vol. 130, no. 8 (2018).

DOI: 10.1007/s12039-018-1522-4

Google Scholar

[18] S. PAL and T. K. KUNDU. DFT-based inhibitor and promoter selection criteria for pentagonal dodecahedron methane hydrate cage. J. Chem. Sci., vol. 125, no. 5, p.1259–1266 (2013).

DOI: 10.1007/s12039-013-0470-2

Google Scholar

[19] S. Pal and T. K. Kundu. Stability Analysis and Frontier Orbital Study of Different Glycol and Water Complex. ISRN Phys. Chem., vol. 2013, p.1–16 (2013).

DOI: 10.1155/2013/753139

Google Scholar

[20] Gaussian 09 Revision(B.01),, (Gaussian Inc. Wallingford CT) (2010).

Google Scholar

[21] S. U. D. Shamim et al., A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8). J. Mol. Model., vol. 26, no. 6, (2020).

DOI: 10.1007/s00894-020-04419-z

Google Scholar

[22] D. Farmanzadeh, A. Soltanabadi, and S. Yeganegi. DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides. J. Chinese Chem. Soc., vol. 60, no. 5, p.551–558 (2013).

DOI: 10.1002/jccs.201200400

Google Scholar

[23] S. Prabhakaran and M. J. M. Jaffar. Vibrational analysis, ab initio hf and DFT studies of 2,4,6-Trimethyl phenol. Indian J. Pure Appl. Phys., vol. 56, no. 2, p.119–127 (2018).

Google Scholar

[24] M. A. Mumit, T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. Paul, and M. C. Sheikh. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct., vol. 1220, p.128715 (2020).

DOI: 10.1016/j.molstruc.2020.128715

Google Scholar

[25] T. Abbaz, A. Bendjeddou, and D. Villemin. Molecular orbital studies ( hardness , chemical potential , electro negativity and electrophilicity ) of TTFs conjugated between. Int. J. Adv. Sci. Eng. Technol., vol. 5, no. 2, p.5150–5161 (2018).

Google Scholar

[26] M. M. Sanagi et al., Agarose- and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century. Journal of Separation Science, vol. 39, no. 6. p.1152–1159 (2016).

DOI: 10.1002/jssc.201501207

Google Scholar

[27] L. Altomare et al., Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, vol. 41, no. 6. p.337–359, (2018).

DOI: 10.1177/0391398818765323

Google Scholar

[28] Y. Huang, C. Rong, R. Zhang, and S. Liu. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J. Mol. Model., vol. 23, no. 1 (2017).

DOI: 10.1007/s00894-016-3175-x

Google Scholar

[29] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput., vol. 8, no. 5, p.1515–1531 (2012).

DOI: 10.1021/ct2009363

Google Scholar

[30] L. Goerigk and S. Grimme. Double-hybrid density functionals provide a balanced description of excited 1La and 1Lb states in polycyclic aromatic hydrocarbons. J. Chem. Theory Comput., vol. 7, no. 10, p.3272–3277 (2011).

DOI: 10.1021/ct200380v

Google Scholar

[31] L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S. Grimme. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys., vol. 19, no. 48, p.32184–32215 (2017).

DOI: 10.1039/c7cp04913g

Google Scholar

[32] D. Intrieri et al., Indoles from Alkynes and Aryl Azides: Scope and Theoretical Assessment of Ruthenium Porphyrin-Catalyzed Reactions. Chem. - A Eur. J., vol. 25, no. 72, p.16591–16605 (2019).

DOI: 10.1002/chem.201904224

Google Scholar

[33] A. Soncini, A. M. Teale, T. Helgaker, F. De Proft, and D. J. Tozer. Maps of current density using density-functional methods. J. Chem. Phys., vol. 129, no. 7 (2008).

DOI: 10.1063/1.2969104

Google Scholar