The Effect of Nanoparticles (n-HAp, n-TiO2) on the Thermal Properties and Biomechanical Analysis of Polymeric Composite Materials for Dental Applications

Article Preview

Abstract:

Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-34

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - a review, Prog. Mater. Sci., 54 (2009) 397–425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[2] E. Gibon, D.F. Amanatullah, F. Loi, J. Pajarinen, A. Nabeshima, Z.Y. Yao, M. Hamadouche, S.B. Goodman, The biological response to orthopaedic implants for joint replacement: part I: metals, J. Biomed. Mater. Res. B Appl. Biomater., 105 (2017) 2162–2173.

DOI: 10.1002/jbm.b.33734

Google Scholar

[3] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater., 8 (2012) 3888–3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[4] J.W. Lee, H.B. Wen, P. Gubbi, G.E. Romanos, New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: a pilot canine study, Clin. Oral Implants Res., 29 (2018) 164–174.

DOI: 10.1111/clr.13074

Google Scholar

[5] A.J. Rahyussalim, A.F. Marsetio, I. Saleh, T. Kurniawati, Y. Whulanza, The needs of current implant technology in orthopaedic prosthesis biomaterials application to reduce prosthesis failure rate, J. Nanomater., 9 (2016), https://doi.org/10.1155/2016/5386924.

DOI: 10.1155/2016/5386924

Google Scholar

[6] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27 (2006) 2651–2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[7] Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA, The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium, Biomaterials ,2008;29:1563–72.

DOI: 10.1016/j.biomaterials.2007.12.001

Google Scholar

[8] J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H.B. Semi III and A. S. turner, Polyetheretherketone as a biomaterial for spinal applications, Biomaterials, 27(2006) 324-334.

DOI: 10.1016/j.biomaterials.2005.07.011

Google Scholar

[9] C. D´ıaz and G. Fuentes, Tribological Studies Comparison between UHMPE and PEEK for prosthesis application, Surface and Coatings Technology, 325(2017)656-660.

DOI: 10.1016/j.surfcoat.2017.07.007

Google Scholar

[10] J. Kolmas, S. Krukowski, A. Laskus and M. Jurkitewicz, Synthetic hydroxyapatite in pharmaceutical applications, Ceram. Int. ,42 (2016) 2472–2487.

DOI: 10.1016/j.ceramint.2015.10.048

Google Scholar

[11] M.S. Abu Bakar, P. Cheang and K.A. Khor, Thermal processing of hydroxyapatite reinforced polyetheretherketone composites, Journal of Materials Processing Technology, 89-90 (1999) 462- 466.

DOI: 10.1016/s0924-0136(99)00060-6

Google Scholar

[12] S. Yousefali, A. Reyhani, S. Z. Mortazavi, N. Yousefali and A.Rajabpour, UV-blue spectral down-shifting of titanium dioxide nano-structures doped with nitrogen on the glass substrate to study its anti-bacterial properties on the E. Coli bacteria, Surfaces and Interfaces 13 (2018) 11–21.

DOI: 10.1016/j.surfin.2018.07.003

Google Scholar

[13] S. Shi, D. Shen, T. Xu and Y. Zhang, Thermal, optical, interfacial and mechanical properties of titanium dioxide/shape memory polyurethane nanocomposites, 164 (2018)17-23.

DOI: 10.1016/j.compscitech.2018.05.022

Google Scholar

[14] K. Bataineh and M. Al Janaideh, Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load, Clinical Implant Dental and Related Research, 21(2019) 1206-1217.

DOI: 10.1111/cid.12858

Google Scholar

[15] A. D. Schwitalla, M. Abou-Emara, T. Spintig, J. Lackmann and W. d. Muller, Finite Element Analysis of the Biomechanical Effects of PEEK Dental Implants on the Peri-implant Bone, Journal of Biomechanics, 48(2015)1-7.

DOI: 10.1016/j.jbiomech.2014.11.017

Google Scholar

[16] S. M. Tang, P. Cheang, M. S. AbuBakar, K. A. Khor, and K. Liao, Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites, International Journal of Fatigue, 26(2004)49–57.

DOI: 10.1016/s0142-1123(03)00080-x

Google Scholar

[17] K. L. Wong, C. T. Wong, W. C. Liu, H B Pan, M. K .Fong, W. M. Lam, W. L. Cheung, W. M. Tang, K. Y. Chiu, K. D. K. Luk, W. W. Lu, Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites, Biomaterials, 30(2009)3810–3817.

DOI: 10.1016/j.biomaterials.2009.04.016

Google Scholar

[18] I.Y. Kim, A. Sugino, K. Kikuta, C. Ohtsuki and S.B. Cho, Bioactive composites consisting of PEEK and calcium silicate powders, J. Biomater. Appl., 24(2009)105–18.

DOI: 10.1177/0885328208094557

Google Scholar

[19] L.Wang,S.He,X.Wu,S.Liang,Z.Mu,J.Wei,Polyetheretherketone/nanofluorohydroxyapatite composite with antimicrobial activity and osseointegration properties, Biomaterials, 35(2014)6758-6775.

DOI: 10.1016/j.biomaterials.2014.04.085

Google Scholar

[20] T.P. Oliveira, S. N. Silva and J. A. Sousa, Flexural Fatigue Behavior of Plasma-Sprayed Hydroxyapatite-Coated Polyether-ether-ketone (PEEK) Injection Moldings Derived from Dynamic Mechanical Analysis, International Journal of Fatigue, 108 (2018)1-8.

DOI: 10.1016/j.ijfatigue.2017.10.016

Google Scholar

[21] K. Masamoto, S. Fujibayashi, T. Yabutsuka, T. Hiruta, B. Otsuki, Y. Okuzu, K. Goto, T. Shimizu, Y. Shimizu, C. Ishizaki, K. Fukushima, T. Kawai, M. Hayashi, K. Morizane, T. Kawata, M. Imamura and S. Matsuda, In vivo and in vitro bioactivity of a 'precursor of apatite, treatment on Polyetheretherketone, Acta Biomaterialia, 91 (2019) 48-59.

DOI: 10.1016/j.actbio.2019.04.041

Google Scholar

[22] X. Lv, X. Wang, S. Tang, D. Wang, L. Yang, A. He, T. Tang and J. Wei, Incorporation of Molybdenum Disulfide into Polyetheretherketone Creating Biocomposites with Improved Mechanical, Tribological Performances and Cytocompatibility for Artificial Joints Applications, Colloids and Surfaces B: Biointerfaces, 189 (2020)110819.

DOI: 10.1016/j.colsurfb.2020.110819

Google Scholar

[23] A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, S.R. Ghaffarian, The Effect of Annealing on The Behavior of Polyetheretherketone Composites Compared to Pure Titanium, Materials Research Express, 6 (2019)125405.

DOI: 10.1088/2053-1591/ab5503

Google Scholar

[24] A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, The nanomechanical characterization and tensile test of polymer nanocomposites for bioimplants, The 19th int. conference on technologies and materials for renewable energy, environment and sustainability-TMRESS, Lebanon, (2019).

DOI: 10.1063/1.5116992

Google Scholar

[25] Annual Book of ASTM Standard, Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry, D 3418-03(2003)1-6.

Google Scholar

[26] ASM Hand book, Properties and Selection Nonferrous Alloy and Special Purpose Materials", 5th Edition, 2(1998)897– 9010.

Google Scholar

[27] Q. Li Zeng, Y. and X. tang, The Application and Research Progresses of Nickel-Titanium Shape Memory Alloy in Reconstructive Surgery ̕, Australia's phys. Eng. Sci. Med., 33(2010)129–136.

DOI: 10.1007/s13246-010-0022-8

Google Scholar

[28] A. A. Mohammed, E. S. Al-Hassani and J. K. Oleiwi, The Nanomechanical Characterization and Tensile Test of Polymer nanocomposites for Bioimplants, The 19th int. conference on technologies and materials for renewable energy, environment and sustainability-TMRESS, Lebanon, (2019).

DOI: 10.1063/1.5116992

Google Scholar

[29] J. T. Strong and C. E. Misch, Functional Surface Area: Thread-form Parameter Optimization for Implant Body Design, Compend Contin Educ Dent, 19(1998)4–9.

Google Scholar

[30] J. Zmudzki, G. Chladek and J. Kasperski, The Influence of A complete Lower Denture Destabilization on The Pressure of The Mucous Membrane Foundation, Acta of Bioengineering and Biomechanics, 14(2012)67-73.

Google Scholar

[31] J. K. Oleiw, E. S. Al-hassani and A. A. Mohammed, Tensile and Buckling Analysis of Polymeric Composite Columns, Basrah Journal for Engineering Sciences, 14(2014)176-188.

Google Scholar

[32] G. Tao and Z. Xia, Biaxial Fatigue Behavior of an Epoxy Polymer with Mean Stress Effect, International Journal of Fatigue, 31(2009)678-685.

DOI: 10.1016/j.ijfatigue.2008.03.025

Google Scholar

[33] S. Choi and J. Kim, Thermal Conductivity of Epoxy Composites with A Binary-Particle System of Aluminum Oxide and Aluminum Nitride Fillers, Composites: Part B Engineering, 51(2013)140–147.

DOI: 10.1016/j.compositesb.2013.03.002

Google Scholar

[34] K. Yangchuan, Z. Yubin and W. Zhongwen, The Measurements of Crystallinity Degree of PEEK, Chinese Journal Of Materials Research, 10(1996)205-209.

Google Scholar

[35] J. Chen, Q. Guo, Z. Zhao, X. Shao, X. Wang and C. Duan, Thermal, Crystalline, and Tribological Properties of PEEK/PEI/PES Plastics Alloys, Journal of Applied Polymer Science, 127(2013)2220-2226.

DOI: 10.1002/app.37923

Google Scholar

[36] J. N. Panda, J. Bijwe and R. K. Pandey, Optimization of The Amount of Short Glass Fibers for Superior Wear Performance of PAEK Composites, Composites Part A: Applied Science and Manufacturing, 116(2019)158-168.

DOI: 10.1016/j.compositesa.2018.10.034

Google Scholar

[37] B. Li, D. Liu, G. Li, X. Yang, Multifold Interface and Multilevel Crack Propagation Mechanisms of Graphene Oxide/Polyurethane/Epoxy Membranes Interlaminar-Toughened Carbon Fiber-Reinforced Polymer Composites, Journal of Materials Science 53(2018)15939-15951.

DOI: 10.1007/s10853-018-2753-y

Google Scholar

[38] X. Hou, Y. Hu, X. Hu and D. Jiang, Poly (ether ether ketone) Composites Reinforced by Graphene Oxide and Silicon Dioxide Nanoparticles, High Performance Polymers, 30(2018)406-417.

DOI: 10.1177/0954008317701549

Google Scholar

[39] X. Wang, J. Jin and M. Song, An Investigation of The Mechanism of Graphene Toughening Epoxy, Carbon, 65(2013)324-333.

DOI: 10.1016/j.carbon.2013.08.032

Google Scholar

[40] X. Wang and M. Song, Toughening of Polymers by Graphene, Nanomaterials and Energy, 2(2013)265-278.

Google Scholar

[41] M. He, X. Chen, Z. Guo, X. Qiu, Y. Yang, C. Su, N. Jiang, Y. Li, D. Sun and L. Zhang, Super Tough Graphene Oxide Reinforced Polyetheretherketone for Potential Hard Tissue Repair Applications, Composites Science and Technology, 174(2019)194-201.

DOI: 10.1016/j.compscitech.2019.02.028

Google Scholar

[42] S. L. Evans and P. J. Gregson, Composite Technology in Load-Bearing Orthopedic Implants, Engineering Materials, University of Southampton, Biomaterials, 19(1998)1329–1342.

DOI: 10.1016/s0142-9612(97)00217-2

Google Scholar