[1]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - a review, Prog. Mater. Sci., 54 (2009) 397–425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[2]
E. Gibon, D.F. Amanatullah, F. Loi, J. Pajarinen, A. Nabeshima, Z.Y. Yao, M. Hamadouche, S.B. Goodman, The biological response to orthopaedic implants for joint replacement: part I: metals, J. Biomed. Mater. Res. B Appl. Biomater., 105 (2017) 2162–2173.
DOI: 10.1002/jbm.b.33734
Google Scholar
[3]
M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater., 8 (2012) 3888–3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[4]
J.W. Lee, H.B. Wen, P. Gubbi, G.E. Romanos, New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: a pilot canine study, Clin. Oral Implants Res., 29 (2018) 164–174.
DOI: 10.1111/clr.13074
Google Scholar
[5]
A.J. Rahyussalim, A.F. Marsetio, I. Saleh, T. Kurniawati, Y. Whulanza, The needs of current implant technology in orthopaedic prosthesis biomaterials application to reduce prosthesis failure rate, J. Nanomater., 9 (2016), https://doi.org/10.1155/2016/5386924.
DOI: 10.1155/2016/5386924
Google Scholar
[6]
G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27 (2006) 2651–2670.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[7]
Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA, The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium, Biomaterials ,2008;29:1563–72.
DOI: 10.1016/j.biomaterials.2007.12.001
Google Scholar
[8]
J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H.B. Semi III and A. S. turner, Polyetheretherketone as a biomaterial for spinal applications, Biomaterials, 27(2006) 324-334.
DOI: 10.1016/j.biomaterials.2005.07.011
Google Scholar
[9]
C. D´ıaz and G. Fuentes, Tribological Studies Comparison between UHMPE and PEEK for prosthesis application, Surface and Coatings Technology, 325(2017)656-660.
DOI: 10.1016/j.surfcoat.2017.07.007
Google Scholar
[10]
J. Kolmas, S. Krukowski, A. Laskus and M. Jurkitewicz, Synthetic hydroxyapatite in pharmaceutical applications, Ceram. Int. ,42 (2016) 2472–2487.
DOI: 10.1016/j.ceramint.2015.10.048
Google Scholar
[11]
M.S. Abu Bakar, P. Cheang and K.A. Khor, Thermal processing of hydroxyapatite reinforced polyetheretherketone composites, Journal of Materials Processing Technology, 89-90 (1999) 462- 466.
DOI: 10.1016/s0924-0136(99)00060-6
Google Scholar
[12]
S. Yousefali, A. Reyhani, S. Z. Mortazavi, N. Yousefali and A.Rajabpour, UV-blue spectral down-shifting of titanium dioxide nano-structures doped with nitrogen on the glass substrate to study its anti-bacterial properties on the E. Coli bacteria, Surfaces and Interfaces 13 (2018) 11–21.
DOI: 10.1016/j.surfin.2018.07.003
Google Scholar
[13]
S. Shi, D. Shen, T. Xu and Y. Zhang, Thermal, optical, interfacial and mechanical properties of titanium dioxide/shape memory polyurethane nanocomposites, 164 (2018)17-23.
DOI: 10.1016/j.compscitech.2018.05.022
Google Scholar
[14]
K. Bataineh and M. Al Janaideh, Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load, Clinical Implant Dental and Related Research, 21(2019) 1206-1217.
DOI: 10.1111/cid.12858
Google Scholar
[15]
A. D. Schwitalla, M. Abou-Emara, T. Spintig, J. Lackmann and W. d. Muller, Finite Element Analysis of the Biomechanical Effects of PEEK Dental Implants on the Peri-implant Bone, Journal of Biomechanics, 48(2015)1-7.
DOI: 10.1016/j.jbiomech.2014.11.017
Google Scholar
[16]
S. M. Tang, P. Cheang, M. S. AbuBakar, K. A. Khor, and K. Liao, Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites, International Journal of Fatigue, 26(2004)49–57.
DOI: 10.1016/s0142-1123(03)00080-x
Google Scholar
[17]
K. L. Wong, C. T. Wong, W. C. Liu, H B Pan, M. K .Fong, W. M. Lam, W. L. Cheung, W. M. Tang, K. Y. Chiu, K. D. K. Luk, W. W. Lu, Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites, Biomaterials, 30(2009)3810–3817.
DOI: 10.1016/j.biomaterials.2009.04.016
Google Scholar
[18]
I.Y. Kim, A. Sugino, K. Kikuta, C. Ohtsuki and S.B. Cho, Bioactive composites consisting of PEEK and calcium silicate powders, J. Biomater. Appl., 24(2009)105–18.
DOI: 10.1177/0885328208094557
Google Scholar
[19]
L.Wang,S.He,X.Wu,S.Liang,Z.Mu,J.Wei,Polyetheretherketone/nanofluorohydroxyapatite composite with antimicrobial activity and osseointegration properties, Biomaterials, 35(2014)6758-6775.
DOI: 10.1016/j.biomaterials.2014.04.085
Google Scholar
[20]
T.P. Oliveira, S. N. Silva and J. A. Sousa, Flexural Fatigue Behavior of Plasma-Sprayed Hydroxyapatite-Coated Polyether-ether-ketone (PEEK) Injection Moldings Derived from Dynamic Mechanical Analysis, International Journal of Fatigue, 108 (2018)1-8.
DOI: 10.1016/j.ijfatigue.2017.10.016
Google Scholar
[21]
K. Masamoto, S. Fujibayashi, T. Yabutsuka, T. Hiruta, B. Otsuki, Y. Okuzu, K. Goto, T. Shimizu, Y. Shimizu, C. Ishizaki, K. Fukushima, T. Kawai, M. Hayashi, K. Morizane, T. Kawata, M. Imamura and S. Matsuda, In vivo and in vitro bioactivity of a 'precursor of apatite, treatment on Polyetheretherketone, Acta Biomaterialia, 91 (2019) 48-59.
DOI: 10.1016/j.actbio.2019.04.041
Google Scholar
[22]
X. Lv, X. Wang, S. Tang, D. Wang, L. Yang, A. He, T. Tang and J. Wei, Incorporation of Molybdenum Disulfide into Polyetheretherketone Creating Biocomposites with Improved Mechanical, Tribological Performances and Cytocompatibility for Artificial Joints Applications, Colloids and Surfaces B: Biointerfaces, 189 (2020)110819.
DOI: 10.1016/j.colsurfb.2020.110819
Google Scholar
[23]
A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, S.R. Ghaffarian, The Effect of Annealing on The Behavior of Polyetheretherketone Composites Compared to Pure Titanium, Materials Research Express, 6 (2019)125405.
DOI: 10.1088/2053-1591/ab5503
Google Scholar
[24]
A. A. Mohammed, E. S. Al-Hassani, J. K. Oleiwi, The nanomechanical characterization and tensile test of polymer nanocomposites for bioimplants, The 19th int. conference on technologies and materials for renewable energy, environment and sustainability-TMRESS, Lebanon, (2019).
DOI: 10.1063/1.5116992
Google Scholar
[25]
Annual Book of ASTM Standard, Standard Test Method for Transition Temperatures of Polymers by Differential Scanning Calorimetry, D 3418-03(2003)1-6.
Google Scholar
[26]
ASM Hand book, Properties and Selection Nonferrous Alloy and Special Purpose Materials", 5th Edition, 2(1998)897– 9010.
Google Scholar
[27]
Q. Li Zeng, Y. and X. tang, The Application and Research Progresses of Nickel-Titanium Shape Memory Alloy in Reconstructive Surgery ̕, Australia's phys. Eng. Sci. Med., 33(2010)129–136.
DOI: 10.1007/s13246-010-0022-8
Google Scholar
[28]
A. A. Mohammed, E. S. Al-Hassani and J. K. Oleiwi, The Nanomechanical Characterization and Tensile Test of Polymer nanocomposites for Bioimplants, The 19th int. conference on technologies and materials for renewable energy, environment and sustainability-TMRESS, Lebanon, (2019).
DOI: 10.1063/1.5116992
Google Scholar
[29]
J. T. Strong and C. E. Misch, Functional Surface Area: Thread-form Parameter Optimization for Implant Body Design, Compend Contin Educ Dent, 19(1998)4–9.
Google Scholar
[30]
J. Zmudzki, G. Chladek and J. Kasperski, The Influence of A complete Lower Denture Destabilization on The Pressure of The Mucous Membrane Foundation, Acta of Bioengineering and Biomechanics, 14(2012)67-73.
Google Scholar
[31]
J. K. Oleiw, E. S. Al-hassani and A. A. Mohammed, Tensile and Buckling Analysis of Polymeric Composite Columns, Basrah Journal for Engineering Sciences, 14(2014)176-188.
Google Scholar
[32]
G. Tao and Z. Xia, Biaxial Fatigue Behavior of an Epoxy Polymer with Mean Stress Effect, International Journal of Fatigue, 31(2009)678-685.
DOI: 10.1016/j.ijfatigue.2008.03.025
Google Scholar
[33]
S. Choi and J. Kim, Thermal Conductivity of Epoxy Composites with A Binary-Particle System of Aluminum Oxide and Aluminum Nitride Fillers, Composites: Part B Engineering, 51(2013)140–147.
DOI: 10.1016/j.compositesb.2013.03.002
Google Scholar
[34]
K. Yangchuan, Z. Yubin and W. Zhongwen, The Measurements of Crystallinity Degree of PEEK, Chinese Journal Of Materials Research, 10(1996)205-209.
Google Scholar
[35]
J. Chen, Q. Guo, Z. Zhao, X. Shao, X. Wang and C. Duan, Thermal, Crystalline, and Tribological Properties of PEEK/PEI/PES Plastics Alloys, Journal of Applied Polymer Science, 127(2013)2220-2226.
DOI: 10.1002/app.37923
Google Scholar
[36]
J. N. Panda, J. Bijwe and R. K. Pandey, Optimization of The Amount of Short Glass Fibers for Superior Wear Performance of PAEK Composites, Composites Part A: Applied Science and Manufacturing, 116(2019)158-168.
DOI: 10.1016/j.compositesa.2018.10.034
Google Scholar
[37]
B. Li, D. Liu, G. Li, X. Yang, Multifold Interface and Multilevel Crack Propagation Mechanisms of Graphene Oxide/Polyurethane/Epoxy Membranes Interlaminar-Toughened Carbon Fiber-Reinforced Polymer Composites, Journal of Materials Science 53(2018)15939-15951.
DOI: 10.1007/s10853-018-2753-y
Google Scholar
[38]
X. Hou, Y. Hu, X. Hu and D. Jiang, Poly (ether ether ketone) Composites Reinforced by Graphene Oxide and Silicon Dioxide Nanoparticles, High Performance Polymers, 30(2018)406-417.
DOI: 10.1177/0954008317701549
Google Scholar
[39]
X. Wang, J. Jin and M. Song, An Investigation of The Mechanism of Graphene Toughening Epoxy, Carbon, 65(2013)324-333.
DOI: 10.1016/j.carbon.2013.08.032
Google Scholar
[40]
X. Wang and M. Song, Toughening of Polymers by Graphene, Nanomaterials and Energy, 2(2013)265-278.
Google Scholar
[41]
M. He, X. Chen, Z. Guo, X. Qiu, Y. Yang, C. Su, N. Jiang, Y. Li, D. Sun and L. Zhang, Super Tough Graphene Oxide Reinforced Polyetheretherketone for Potential Hard Tissue Repair Applications, Composites Science and Technology, 174(2019)194-201.
DOI: 10.1016/j.compscitech.2019.02.028
Google Scholar
[42]
S. L. Evans and P. J. Gregson, Composite Technology in Load-Bearing Orthopedic Implants, Engineering Materials, University of Southampton, Biomaterials, 19(1998)1329–1342.
DOI: 10.1016/s0142-9612(97)00217-2
Google Scholar