[1]
A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[2]
Q. Guo, C. Y. Zhou, Z. B. Ma, X. M. Yang, Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges, Adv. Mater. 31 (2019) 1901997.
DOI: 10.1002/adma.201901997
Google Scholar
[3]
J. Abed, N. S. Rajput, A. E. Moutaouakil, M. Jouiad, Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting, Nanomaterials 10 (2020), 2260.
DOI: 10.3390/nano10112260
Google Scholar
[4]
W. Zhang, H. L. He, H. Z. Li, L. L. Duan, L. H. Zu, Y. P. Zhai, W. Li, L. Z. Wang, H. G. Fu, D. Y. Zhao, Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization, Adv. Energy Mater.11 (2021) 2003303.
DOI: 10.1002/aenm.202003303
Google Scholar
[5]
Z. X. Lu, X. Wu, N. Y. Chen, M. F. Cao, M. M. Sartin, B. Ren, Photoinduced Charge Transfer from a Semiconductor to a Metal Probed at the Single-Nanoparticle Level, ACS Energy Lett. 6 (2021) 3473–3480.
DOI: 10.1021/acsenergylett.1c01581
Google Scholar
[6]
M. Marelli, C. Evangelisti, M. V. Diamanti, V. D. Santo, M. P. Pedeferri, C. L. Bianchi, L. Schiavi, A. Strini, TiO2 Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity, ACS Appl. Mater. Interfaces. 8 (2016) 31051-31058.
DOI: 10.1021/acsami.6b11436
Google Scholar
[7]
Y. Y. Gao, W. Nie, Q. H. Zhu, X. Wang, S.Y. Wang, F. T. Fan, C. Li, The Polarization Effect in Surface-Plasmon-Induced Photocatalysis on Au/TiO2 Nanoparticles, Angew. Chem. Int. Ed. 132 (2020) 18375-18380.
DOI: 10.1002/ange.202007706
Google Scholar
[8]
X. H. Yang, Y. Wang, L. T. Zhang, H. T. Fu, P He, D. Z. Han, T. Lawson, X. Z. An, The use of tunable optical absorption plasmonic Au and Ag decorated TiO2 structures as efficient visible light photocatalysts, Catalysts 10 (2020) 139.
DOI: 10.3390/catal10010139
Google Scholar
[9]
H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. K. Shirn, H. Kalt, ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal-Semiconductor Interface, Improvement of Blue Emission and Photocatalysis, ACS Nano 2 (2008) 1661-1670.
DOI: 10.1021/nn800353q
Google Scholar
[10]
Y. S. Zhang, J. X. Liu, K. Qian, A. P. Jia, D. Li, L. Shi, J. Hu, J. F. Zhu, W. X. Huang, Structure Sensitivity of Au-TiO2 Strong Metal–Support Interactions, Angew. Chem. Int. Ed. 60 (2021) 12074–12081.
DOI: 10.1002/anie.202101928
Google Scholar
[11]
L. N. Lin, Q. L. Zhong, Y. Z. Zheng, Y. Cheng, R. J. Qi, R. Huang, Size effect of Au nanoparticles in Au-TiO2-x photocatalyst, Chem. Phys. Lett. 770 (2021) 138457.
DOI: 10.1016/j.cplett.2021.138457
Google Scholar
[12]
Y. Y. Gao, F. Cheng, W. N. Fang, X. G. Liu, S. Y. Wang, W. Nie, R. T. Chen, S. Ye, J. Zhu, H. Y, An, C. H. Fan, F. T. Fan, C. Li, Probing of coupling effect induced plasmonic charge accumulation for water oxidation, Natl. Sci. Rev. 8 (2021) nwaa151.
DOI: 10.1093/nsr/nwaa151
Google Scholar
[13]
D. M. Fouad, M. B. Mohamed, Studies on the Photo-Catalytic Activity of Semiconductor Nanostructures and Their Gold Core-Shell on the Photodegradation of Malathion, Nanotechnol. 22 (2011) 455705.
DOI: 10.1088/0957-4484/22/45/455705
Google Scholar
[14]
C. Zhan, G. Wang, J. Yi, J. Y. Wei, Z. H. Li, Z. B. Chen, J. Shi, Y. Yang, W. J. Hong, Z. Q. Tian, Single-Molecule Plasmonic Optical Trapping, Matter 3 (2020) 1350-1360.
DOI: 10.1016/j.matt.2020.07.019
Google Scholar
[15]
C. Wang, Astruc, D. Nanogold Plasmonic Photocatalysis for Organic Synthesis and Clean Energy Conversion, Chem. Soc. Rev. 43 (2014) 7188-7216.
DOI: 10.1039/c4cs00145a
Google Scholar
[16]
C. Zhou, S. Xu, Y. Yang, B. Yang, H. Hu, Z. Quan, B. Sebo, B. Chen, Q. Tai, Z. Sun, X. Zhao, Titanium Dioxide Sols Synthesized by Hydrothermal Methods Using Tetrabutyl Titanate as Starting Material and the Application in Dye Sensitized Solar Cells, Electrochim. Acta 56 (2011) 4308-4314.
DOI: 10.1016/j.electacta.2011.01.054
Google Scholar
[17]
V. Puddu, H. Choi, D. D. Dionysiou, G. L. Puma, TiO2 Photocatalyst for Indoor Air Remediation: Influence of Crystallinity, Crystal Phase, and UV Radiation Intensity on Trichloroethylene Degradation, Appl. Catal. B 94 (2010) 211-218.
DOI: 10.1016/j.apcatb.2009.08.003
Google Scholar
[18]
G. Dodekatos, H. Tüysüz, Plasmonic Au/TiO2 Nanostructures for Glycerol Oxidation, Catal. Sci. Technol. 6 (2016) 7307-7315.
DOI: 10.1039/c6cy01192f
Google Scholar
[19]
G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nat. Phys. Sci. 241 (1973) 20-22.
DOI: 10.1038/physci241020a0
Google Scholar
[20]
Q. Guo, M. Xu, Y. Yuan, R. Gu, J. L. Yao, Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate, Langmuir 32 (2016) 4530-4537.
DOI: 10.1021/acs.langmuir.5b04393
Google Scholar
[21]
Y. Sun, C. J. Zhang, Y. X. Yuan, M. M. Xu, J. L. Yao, The moveable hot spots, effect in an Au nanoparticles-Au plate coupled system. Nanoscale 12 (2020) 23789–23798.
DOI: 10.1039/d0nr06997c
Google Scholar
[22]
T. Lopez, E. Sanchez, P. Bosch, Y. Meas, R. Gomez, FTIR and UV-Vis (Diffuse Reflectance) Spectroscopic Characterization of TiO2 Sol-Gel. Mater, Chem. Phys. 32 (1992) 141-152.
DOI: 10.1016/0254-0584(92)90270-i
Google Scholar
[23]
T. M. Chen, G. Y. Xu, H. Ren, H. Zhang, Z. Q. Tian, J. F. Li, Synthesis of Au@TiO2 Core–shell Nanoparticles with Tunable Structures for Plasmon-enhanced Photocatalysis, Nanoscale Adv. 1 (2019) 4522-4528.
DOI: 10.1039/c9na00548j
Google Scholar
[24]
S. Saha, A. Victorious, L. Soleymani, Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths, Electrochim. Acta 380(2021)138154.
DOI: 10.1016/j.electacta.2021.138154
Google Scholar
[25]
W. Sangkhun, S. Wanwong, J. Wootthikanokkhan, K. Sinthiptharakoon, P. Kumnorkaew, Enhanced Water Splitting Reaction Performance using TiO2 Deposited with Graphene Quantum Dots Grafted onto Gold Nanoparticles, ChemistrySelect 6 (2021) 8664–8671.
DOI: 10.1002/slct.202101445
Google Scholar
[26]
L. R. Baker, A. Hervier, H. Seo, G. Kennedy, K. Komvopoulos, G. A. Somorjai, A. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide, J. Phys. Chem. C 115 (2011) 16006-16011.
DOI: 10.1021/jp203151y
Google Scholar
[27]
Z. L. Wang, L. W. Lai, T. F. Zhang, S. M. Wu, J. Zhao, Y. X. Zhao, Y. H. Jin, J. P. Wang, S. S. Fan, Q. Q. Li, Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal−Dielectric Hybrid-Structured Films, ACS Appl. Energy Mater. 4 (2021) 10542–10552.
DOI: 10.1021/acsaem.1c01485
Google Scholar
[28]
L. Lin, X. Y. Feng, D. P. Lan, Y. Chen, Q. L. Zhong, C. Liu, Y. Cheng, R. J. Qi, J. P. Ge, C. Z. Yu, C. G. Duan, R. Huang, Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO2−x for Enhanced Charge Transfer, J. Phys. Chem. C 124 (2020) 23823–23831.
DOI: 10.1021/acs.jpcc.0c09011
Google Scholar
[29]
N. Roy, K. Bhunia, C. Terashima, A. Fujishima, D. Pradhan, Citrate-Capped Hybrid Au-TiO2 Nanomaterial for Facile and Enhanced Electrochemical Hydrazine Oxidation, ACS Omega 2 (2017) 1215-1221.
DOI: 10.1021/acsomega.6b00566
Google Scholar
[30]
Y. Dong, Y. Su, L. Du, R. Wang, L. Zhang, D. Zhao, W. Xie, Plasmon-Enhanced Deuteration under Visible-Light Irradiation, ACS Nano 13 (2019) 10754-10760.
DOI: 10.1021/acsnano.9b05523
Google Scholar
[31]
Z. Q. Tian, B. Ren, B. W. Mao, Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications. 1. Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces, J. Phys. Chem. 101 (1997) 1338-1346.
DOI: 10.1021/jp962049q
Google Scholar
[32]
A. Campion, P. Kambhampati, Surface-Enhanced Raman Scattering, Chem. Soc. Rev. 27 (1998) 241-250.
DOI: 10.1039/a827241z
Google Scholar
[33]
Z. Q. Tian, B. Ren, D. Y. Wu, Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures, J. Phys. Chem. B 106 (2002) 9463-9483.
DOI: 10.1021/jp0257449
Google Scholar
[34]
H. S. Su, X. G. Zhang, J. J. Sun, X. Jin, D. Y. Wu, X. B. Lian, J. H. Zhong, Real‐Space Observation of Atomic Site‐Specific Electronic Properties of a Pt Nanoisland/Au (111) Bimetallic Surface by Tip‐Enhanced Raman Spectroscopy, Angew. Chem. Int. Ed. 130 (2018) 13361-13365.
DOI: 10.1002/ange.201807778
Google Scholar
[35]
Y. H. Wang, M. M. Liang, Y. J. Zhang, S. Chen, P. Radjenovic, H. Zhang, Z. L. Yang, X. S. Zhou, Z. Q. Tian, Probing Interfacial Electronic and Catalytic Properties on Well‐Defined Surfaces by Using In Situ Raman Spectroscopy, Angew. Chem. Int. Ed. 130 (2018) 11427-11431.
DOI: 10.1002/ange.201805464
Google Scholar
[36]
S. Hu, B. J. Liu, J. M. Feng, C. Zong, K. Q. Lin, X. Wang, D. Y. Wu, B. Ren, Quantifying Surface Temperature of Thermoplasmonic Nanostructures, J. Am. Chem. Soc. 140 (2018) 13680-13686.
DOI: 10.1021/jacs.8b06083
Google Scholar
[37]
L. B. Zhao, M. Zhang, Y. F. Huang, C. T. Williams, D. Y. Wu, B. Ren, Z. Q. Tian, Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds, J. Phys. Chem. Lett. 5 (2014) 1259-1266.
DOI: 10.1021/jz5003346
Google Scholar
[38]
Z. Zhang, L. Chen, M. Sun, P. Ruan, H. Zheng, H. Xu, Insights into the Nature of Plasmon-Driven Catalytic Reactions Revealed by HV-TERS, Nanoscale 5 (2013) 3249-3252.
DOI: 10.1039/c3nr00352c
Google Scholar
[39]
M. Zhang, L. B. Zhao, W. L. Luo, R. Pang, C. Zong, J. Z. Zhou, B. Ren, Z. Q. Tian, D. Y. Wu, Experimental and Theoretical Study on Isotopic Surface-Enhanced Raman Spectroscopy for the Surface Catalytic Coupling Reaction on Silver Electrodes, J. Phys. Chem. C 120 (2016) 11956-11965.
DOI: 10.1021/acs.jpcc.6b02252
Google Scholar
[40]
H. Zhang, J. Wei, X. G. Zhang, Y. J. Zhang, P. M. Radjenovica, D. Y. Wu, F. Pan, Z. Q. Tian, J. F. Li, Plasmon-Induced Interfacial Hot-Electron Transfer Directly Probed by Raman Spectroscopy, Chem 6 (2020) 689-702.
DOI: 10.1016/j.chempr.2019.12.015
Google Scholar
[41]
W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, Surface Modification of ZnO with Ag Improves its Photocatalytic Efficiency and Photostability, J. Photochem. Photobiol. A 216 (2010) 149-155.
DOI: 10.1016/j.jphotochem.2010.06.032
Google Scholar
[42]
Z. Zhang, J. T. Yates Jr., Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces, Chem. Rev. 112 (2012) 5520-5551.
DOI: 10.1021/cr3000626
Google Scholar