Surface Enhanced Raman Spectroscopic Studies on Surface Plasmon Resonance Catalytic Activity of TiO2-Metal Nanocomposites

Article Preview

Abstract:

The rapid recombination of carriers on plasmon metal nanoparticles leads to relatively low efficiency of traditional photocatalysts. The combination of a metal and a semiconductor allows to the separation of hot electrons and holes to improve photocatalytic efficiency. In this study, Au nanoparticles were integrated with semiconductor TiO2 nanoparticles of different sizes to improve the photocatalytic activity. Various techniques have been developed to study the mechanism of catalytic activity, the significance of band bending in the space-charge region within metal–semiconductor nanocomposites, and the built-in electric field. The results provide theoretical and experimental evidence for the design of a high-performance surface plasmon resonance (SPR) photocatalyst. To reveal the interface band structure, surface-enhanced Raman spectroscopy (SERS) was employed to analyze the band structure of the TiO2–metal composites. This approach was based on the electrochemical Stark effect and a molecular probe strategy, combined with X-ray photoelectron spectroscopy (XPS), Electrochemical impedance spectroscopy (EIS), and other techniques at the molecular level. The results demonstrated that charge transfer occurred spontaneously between the Au nanoparticles and TiO2, and that the TiO2–metal interface constitutes a Schottky barrier. Moreover, the size of the TiO2 nanoparticles affects the degree of band bending. Optimal state matching was achieved with TiO2 (60 nm)–Au, improving the photocatalytic activity of the nanocomposite. The photocatalytic coupling reaction of p-aminothiophenol (PATP) acted as a probe to study the catalytic performance of TiO2–metal nanocomposites. The results revealed that the introduction of TiO2 improves the SPR catalytic activity of Au, mainly through the efficient separation of electrons and holes at the TiO2–metal interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[2] Q. Guo, C. Y. Zhou, Z. B. Ma, X. M. Yang, Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges, Adv. Mater. 31 (2019) 1901997.

DOI: 10.1002/adma.201901997

Google Scholar

[3] J. Abed, N. S. Rajput, A. E. Moutaouakil, M. Jouiad, Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting, Nanomaterials 10 (2020), 2260.

DOI: 10.3390/nano10112260

Google Scholar

[4] W. Zhang, H. L. He, H. Z. Li, L. L. Duan, L. H. Zu, Y. P. Zhai, W. Li, L. Z. Wang, H. G. Fu, D. Y. Zhao, Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization, Adv. Energy Mater.11 (2021) 2003303.

DOI: 10.1002/aenm.202003303

Google Scholar

[5] Z. X. Lu, X. Wu, N. Y. Chen, M. F. Cao, M. M. Sartin, B. Ren, Photoinduced Charge Transfer from a Semiconductor to a Metal Probed at the Single-Nanoparticle Level, ACS Energy Lett. 6 (2021) 3473–3480.

DOI: 10.1021/acsenergylett.1c01581

Google Scholar

[6] M. Marelli, C. Evangelisti, M. V. Diamanti, V. D. Santo, M. P. Pedeferri, C. L. Bianchi, L. Schiavi, A. Strini, TiO2 Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity, ACS Appl. Mater. Interfaces. 8 (2016) 31051-31058.

DOI: 10.1021/acsami.6b11436

Google Scholar

[7] Y. Y. Gao, W. Nie, Q. H. Zhu, X. Wang, S.Y. Wang, F. T. Fan, C. Li, The Polarization Effect in Surface-Plasmon-Induced Photocatalysis on Au/TiO2 Nanoparticles, Angew. Chem. Int. Ed. 132 (2020) 18375-18380.

DOI: 10.1002/ange.202007706

Google Scholar

[8] X. H. Yang, Y. Wang, L. T. Zhang, H. T. Fu, P He, D. Z. Han, T. Lawson, X. Z. An, The use of tunable optical absorption plasmonic Au and Ag decorated TiO2 structures as efficient visible light photocatalysts, Catalysts 10 (2020) 139.

DOI: 10.3390/catal10010139

Google Scholar

[9] H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. K. Shirn, H. Kalt, ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal-Semiconductor Interface, Improvement of Blue Emission and Photocatalysis, ACS Nano 2 (2008) 1661-1670.

DOI: 10.1021/nn800353q

Google Scholar

[10] Y. S. Zhang, J. X. Liu, K. Qian, A. P. Jia, D. Li, L. Shi, J. Hu, J. F. Zhu, W. X. Huang, Structure Sensitivity of Au-TiO2 Strong Metal–Support Interactions, Angew. Chem. Int. Ed. 60 (2021) 12074–12081.

DOI: 10.1002/anie.202101928

Google Scholar

[11] L. N. Lin, Q. L. Zhong, Y. Z. Zheng, Y. Cheng, R. J. Qi, R. Huang, Size effect of Au nanoparticles in Au-TiO2-x photocatalyst, Chem. Phys. Lett. 770 (2021) 138457.

DOI: 10.1016/j.cplett.2021.138457

Google Scholar

[12] Y. Y. Gao, F. Cheng, W. N. Fang, X. G. Liu, S. Y. Wang, W. Nie, R. T. Chen, S. Ye, J. Zhu, H. Y, An, C. H. Fan, F. T. Fan, C. Li, Probing of coupling effect induced plasmonic charge accumulation for water oxidation, Natl. Sci. Rev. 8 (2021) nwaa151.

DOI: 10.1093/nsr/nwaa151

Google Scholar

[13] D. M. Fouad, M. B. Mohamed, Studies on the Photo-Catalytic Activity of Semiconductor Nanostructures and Their Gold Core-Shell on the Photodegradation of Malathion, Nanotechnol. 22 (2011) 455705.

DOI: 10.1088/0957-4484/22/45/455705

Google Scholar

[14] C. Zhan, G. Wang, J. Yi, J. Y. Wei, Z. H. Li, Z. B. Chen, J. Shi, Y. Yang, W. J. Hong, Z. Q. Tian, Single-Molecule Plasmonic Optical Trapping, Matter 3 (2020) 1350-1360.

DOI: 10.1016/j.matt.2020.07.019

Google Scholar

[15] C. Wang, Astruc, D. Nanogold Plasmonic Photocatalysis for Organic Synthesis and Clean Energy Conversion, Chem. Soc. Rev. 43 (2014) 7188-7216.

DOI: 10.1039/c4cs00145a

Google Scholar

[16] C. Zhou, S. Xu, Y. Yang, B. Yang, H. Hu, Z. Quan, B. Sebo, B. Chen, Q. Tai, Z. Sun, X. Zhao, Titanium Dioxide Sols Synthesized by Hydrothermal Methods Using Tetrabutyl Titanate as Starting Material and the Application in Dye Sensitized Solar Cells, Electrochim. Acta 56 (2011) 4308-4314.

DOI: 10.1016/j.electacta.2011.01.054

Google Scholar

[17] V. Puddu, H. Choi, D. D. Dionysiou, G. L. Puma, TiO2 Photocatalyst for Indoor Air Remediation: Influence of Crystallinity, Crystal Phase, and UV Radiation Intensity on Trichloroethylene Degradation, Appl. Catal. B 94 (2010) 211-218.

DOI: 10.1016/j.apcatb.2009.08.003

Google Scholar

[18] G. Dodekatos, H. Tüysüz, Plasmonic Au/TiO2 Nanostructures for Glycerol Oxidation, Catal. Sci. Technol. 6 (2016) 7307-7315.

DOI: 10.1039/c6cy01192f

Google Scholar

[19] G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nat. Phys. Sci. 241 (1973) 20-22.

DOI: 10.1038/physci241020a0

Google Scholar

[20] Q. Guo, M. Xu, Y. Yuan, R. Gu, J. L. Yao, Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate, Langmuir 32 (2016) 4530-4537.

DOI: 10.1021/acs.langmuir.5b04393

Google Scholar

[21] Y. Sun, C. J. Zhang, Y. X. Yuan, M. M. Xu, J. L. Yao, The moveable hot spots, effect in an Au nanoparticles-Au plate coupled system. Nanoscale 12 (2020) 23789–23798.

DOI: 10.1039/d0nr06997c

Google Scholar

[22] T. Lopez, E. Sanchez, P. Bosch, Y. Meas, R. Gomez, FTIR and UV-Vis (Diffuse Reflectance) Spectroscopic Characterization of TiO2 Sol-Gel. Mater, Chem. Phys. 32 (1992) 141-152.

DOI: 10.1016/0254-0584(92)90270-i

Google Scholar

[23] T. M. Chen, G. Y. Xu, H. Ren, H. Zhang, Z. Q. Tian, J. F. Li, Synthesis of Au@TiO2 Core–shell Nanoparticles with Tunable Structures for Plasmon-enhanced Photocatalysis, Nanoscale Adv. 1 (2019) 4522-4528.

DOI: 10.1039/c9na00548j

Google Scholar

[24] S. Saha, A. Victorious, L. Soleymani, Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths, Electrochim. Acta 380(2021)138154.

DOI: 10.1016/j.electacta.2021.138154

Google Scholar

[25] W. Sangkhun, S. Wanwong, J. Wootthikanokkhan, K. Sinthiptharakoon, P. Kumnorkaew, Enhanced Water Splitting Reaction Performance using TiO2 Deposited with Graphene Quantum Dots Grafted onto Gold Nanoparticles, ChemistrySelect 6 (2021) 8664–8671.

DOI: 10.1002/slct.202101445

Google Scholar

[26] L. R. Baker, A. Hervier, H. Seo, G. Kennedy, K. Komvopoulos, G. A. Somorjai, A. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide, J. Phys. Chem. C 115 (2011) 16006-16011.

DOI: 10.1021/jp203151y

Google Scholar

[27] Z. L. Wang, L. W. Lai, T. F. Zhang, S. M. Wu, J. Zhao, Y. X. Zhao, Y. H. Jin, J. P. Wang, S. S. Fan, Q. Q. Li, Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal−Dielectric Hybrid-Structured Films, ACS Appl. Energy Mater. 4 (2021) 10542–10552.

DOI: 10.1021/acsaem.1c01485

Google Scholar

[28] L. Lin, X. Y. Feng, D. P. Lan, Y. Chen, Q. L. Zhong, C. Liu, Y. Cheng, R. J. Qi, J. P. Ge, C. Z. Yu, C. G. Duan, R. Huang, Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO2−x for Enhanced Charge Transfer, J. Phys. Chem. C 124 (2020) 23823–23831.

DOI: 10.1021/acs.jpcc.0c09011

Google Scholar

[29] N. Roy, K. Bhunia, C. Terashima, A. Fujishima, D. Pradhan, Citrate-Capped Hybrid Au-TiO2 Nanomaterial for Facile and Enhanced Electrochemical Hydrazine Oxidation, ACS Omega 2 (2017) 1215-1221.

DOI: 10.1021/acsomega.6b00566

Google Scholar

[30] Y. Dong, Y. Su, L. Du, R. Wang, L. Zhang, D. Zhao, W. Xie, Plasmon-Enhanced Deuteration under Visible-Light Irradiation, ACS Nano 13 (2019) 10754-10760.

DOI: 10.1021/acsnano.9b05523

Google Scholar

[31] Z. Q. Tian, B. Ren, B. W. Mao, Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications. 1. Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces, J. Phys. Chem. 101 (1997) 1338-1346.

DOI: 10.1021/jp962049q

Google Scholar

[32] A. Campion, P. Kambhampati, Surface-Enhanced Raman Scattering, Chem. Soc. Rev. 27 (1998) 241-250.

DOI: 10.1039/a827241z

Google Scholar

[33] Z. Q. Tian, B. Ren, D. Y. Wu, Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures, J. Phys. Chem. B 106 (2002) 9463-9483.

DOI: 10.1021/jp0257449

Google Scholar

[34] H. S. Su, X. G. Zhang, J. J. Sun, X. Jin, D. Y. Wu, X. B. Lian, J. H. Zhong, Real‐Space Observation of Atomic Site‐Specific Electronic Properties of a Pt Nanoisland/Au (111) Bimetallic Surface by Tip‐Enhanced Raman Spectroscopy, Angew. Chem. Int. Ed. 130 (2018) 13361-13365.

DOI: 10.1002/ange.201807778

Google Scholar

[35] Y. H. Wang, M. M. Liang, Y. J. Zhang, S. Chen, P. Radjenovic, H. Zhang, Z. L. Yang, X. S. Zhou, Z. Q. Tian, Probing Interfacial Electronic and Catalytic Properties on Well‐Defined Surfaces by Using In Situ Raman Spectroscopy, Angew. Chem. Int. Ed. 130 (2018) 11427-11431.

DOI: 10.1002/ange.201805464

Google Scholar

[36] S. Hu, B. J. Liu, J. M. Feng, C. Zong, K. Q. Lin, X. Wang, D. Y. Wu, B. Ren, Quantifying Surface Temperature of Thermoplasmonic Nanostructures, J. Am. Chem. Soc. 140 (2018) 13680-13686.

DOI: 10.1021/jacs.8b06083

Google Scholar

[37] L. B. Zhao, M. Zhang, Y. F. Huang, C. T. Williams, D. Y. Wu, B. Ren, Z. Q. Tian, Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds, J. Phys. Chem. Lett. 5 (2014) 1259-1266.

DOI: 10.1021/jz5003346

Google Scholar

[38] Z. Zhang, L. Chen, M. Sun, P. Ruan, H. Zheng, H. Xu, Insights into the Nature of Plasmon-Driven Catalytic Reactions Revealed by HV-TERS, Nanoscale 5 (2013) 3249-3252.

DOI: 10.1039/c3nr00352c

Google Scholar

[39] M. Zhang, L. B. Zhao, W. L. Luo, R. Pang, C. Zong, J. Z. Zhou, B. Ren, Z. Q. Tian, D. Y. Wu, Experimental and Theoretical Study on Isotopic Surface-Enhanced Raman Spectroscopy for the Surface Catalytic Coupling Reaction on Silver Electrodes, J. Phys. Chem. C 120 (2016) 11956-11965.

DOI: 10.1021/acs.jpcc.6b02252

Google Scholar

[40] H. Zhang, J. Wei, X. G. Zhang, Y. J. Zhang, P. M. Radjenovica, D. Y. Wu, F. Pan, Z. Q. Tian, J. F. Li, Plasmon-Induced Interfacial Hot-Electron Transfer Directly Probed by Raman Spectroscopy, Chem 6 (2020) 689-702.

DOI: 10.1016/j.chempr.2019.12.015

Google Scholar

[41] W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, Surface Modification of ZnO with Ag Improves its Photocatalytic Efficiency and Photostability, J. Photochem. Photobiol. A 216 (2010) 149-155.

DOI: 10.1016/j.jphotochem.2010.06.032

Google Scholar

[42] Z. Zhang, J. T. Yates Jr., Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces, Chem. Rev. 112 (2012) 5520-5551.

DOI: 10.1021/cr3000626

Google Scholar