[1]
Higuchi M, Otsuka Y, Shomura R, Kurth D G, Syntheses of novel bis-terpyridine and cyclic phenylazomethine as organic modules in organic–metallic hybrid materials, Thin Solid Films. 516 (2008) 2416–20.
DOI: 10.1016/j.tsf.2007.04.107
Google Scholar
[2]
Markovic G, Visakh P M, 1 - Polymer blends: State of art Recent Developments in Polymer Macro, Micro and Nano Blend ed P M Visakh, G Markovic and D Pasquini (Woodhead Publishing). (2017) p.1–15.
DOI: 10.1016/b978-0-08-100408-1.00001-7
Google Scholar
[3]
Kim C, Huan T D, Krishnan S, Ramprasad R, A hybrid organic-inorganic perovskite dataset Scientific Data, Volume 4, id. 170057 (2017). 4 170057.
DOI: 10.1038/sdata.2017.57
Google Scholar
[4]
Bandyopadhyay A, De Sarkar M, Bhowmick A K, Poly (vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties, J Mater Sci. 40 (2005) 5233–41.
DOI: 10.1007/s10853-005-4417-y
Google Scholar
[5]
Kanie K, Muramatsu A, Organic-Inorganic Hybrid Liquid Crystals: Innovation Toward Suprahybrid Material, Nanohybridization of Organic-Inorganic Materials Advances in Materials Research ed A Muramatsu and T Miyashita, (Berlin, Heidelberg: Springer). (2009) p.41–53.
DOI: 10.1007/978-3-540-92233-9_2
Google Scholar
[6]
Rosato D V, Di Mattia D P, Rosato D V, The Properties of Plastics Designing with Plastics and Composites: A Handbook ed D V Rosato, D P Di Mattia, and D V Rosato, (Boston, MA: Springer US). (1991) p.405–588.
DOI: 10.1007/978-1-4615-9723-0_6
Google Scholar
[7]
Serbin J, Egbert A, Ostendorf A, Chichkov B N, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L and Popall M, Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics, Opt. Lett., OL. 28(2003) 301–3.
DOI: 10.1364/ol.28.000301
Google Scholar
[8]
Houbertz R, Schulz J, Fröhlich L, Domann G, Popall M, Inorganic-organic hybrid materials for polymer electronic applications, MRS Online Proceedings Library Archive. 769 (2003).
DOI: 10.1557/proc-769-h7.4
Google Scholar
[9]
Lai Q, Zhang L, Li Z, Stickle W F, Williams R S, Chen Y, Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions, Advanced Materials. 22 (2010) 2448–53.
DOI: 10.1002/adma.201000282
Google Scholar
[10]
Wei Y, Jin D, Xu J, Baran G, Qiu K-Y, Mechanical properties of interface-free polyacrylate-silica hybrid sol-gel materials for potential dental applications, Polymers for Advanced Technologies. 12 (2001) 361–8.
DOI: 10.1002/pat.118
Google Scholar
[11]
Choudhary N, Islam M A, Kim J H, Ko T-J, Schropp A, Hurtado L, Weitzman D, Zhai L, Jung Y, Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today. 19 (2018) 16–40.
DOI: 10.1016/j.nantod.2018.02.007
Google Scholar
[12]
Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G, Hybrid materials based on clays for environmental and biomedical applications, J. Mater. Chem. 20 (2010) 9306–21.
DOI: 10.1039/c0jm00432d
Google Scholar
[13]
Catauro M, Raucci M G, Ausanio G, Ambrosio L, Sol-gel Synthesis, Characterization and Bioactivity of Poly(Ether-Imide)/TiO2 Hybrid Materials, Journal of Applied Biomaterials and Biomechanics. (2018).
Google Scholar
[14]
Vallet-Regí M, Colilla M, González B, Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics, Chem. Soc. Rev. 40 (2011) 596–607.
DOI: 10.1039/c0cs00025f
Google Scholar
[15]
Huang Y, Zheng L, Zhang H, Zhang G, Jiang L, Design and optimization of substrate placement for large-sized and high-quality fused silica glass by SiCl4 flame hydrolysis deposition International, Journal of Heat and Mass Transfer. 111 (2017) 917–32.
DOI: 10.1016/j.ijheatmasstransfer.2017.03.074
Google Scholar
[16]
Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange, Carbon. 50 (2012) 4093–101.
DOI: 10.1016/j.carbon.2012.04.057
Google Scholar
[17]
Van Chuc N, Thanh C T, Van Tu N, Phuong V T Q, Thang P V, Thanh Tam N T, A Simple Approach to the Fabrication of Graphene-Carbon Nanotube Hybrid Films on Copper Substrate by Chemical Vapor Deposition, Journal of Materials Science & Technology. 31 (2015) 479–83.
DOI: 10.1016/j.jmst.2014.11.027
Google Scholar
[18]
Pomogailo A D, Polymer Sol-Gel Synthesis of Hybrid Nanocomposites, Colloid J. 67 (2005) 658–77.
DOI: 10.1007/s10595-005-0148-7
Google Scholar
[19]
Dippong T, Toloman D, Levei E-A, Cadar O, Mesaros A, A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites, Thermochimica Acta. 666 (2018) 103–15.
DOI: 10.1016/j.tca.2018.05.021
Google Scholar
[20]
Obregón S, Rodríguez-González V, Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review, J Sol-Gel Sci Technol (2021).
DOI: 10.1007/s10971-021-05628-5
Google Scholar
[21]
Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K, Synthesis of Monolithic Al2O3 with Well-Defined Macropores and Mesostructured Skeletons via the Sol−Gel Process Accompanied by Phase Separation, Chem. Mater. 19 (2007) 3393–8.
DOI: 10.1021/cm063051p
Google Scholar
[22]
Deng Y-H, Wang C-C, Hu J-H, Yang W-L, Fu S-K, Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach Colloids and Surfaces A, Physicochemical and Engineering Aspects. 262 (2005) 87–93.
DOI: 10.1016/j.colsurfa.2005.04.009
Google Scholar
[23]
Pereira M M, Jones J R, Orefice R L, Hench L L, Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method, J Mater Sci: Mater Med. 16 (2005) 1045–50.
DOI: 10.1007/s10856-005-4758-8
Google Scholar
[24]
Agrawal K, Singh G, Puri D, Prakash S, Synthesis and Characterization of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application, Journal of Minerals and Materials Characterization and Engineering. 10 (2011) 727–34.
DOI: 10.4236/jmmce.2011.108057
Google Scholar
[25]
You Y, Zhang S, Wan L, Xu D, Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde, Applied Surface Science. 258 (2012) 3469–74.
DOI: 10.1016/j.apsusc.2011.11.099
Google Scholar
[26]
Pooyan S and Box P O, Sol-gel process and its application in Nanotechnology, Journal of Polymer Engineering and Technology. 13 (2005), 38-41.
Google Scholar
[27]
Singh V, Singh D, Polyvinyl alcohol–silica nanohybrids: An efficient carrier matrix for amylase immobilization Process Biochemistry 48 (2013) 96–102.
DOI: 10.1016/j.procbio.2012.10.017
Google Scholar
[28]
Chandar Shekar B, Ranjit Kumar R, Dinesh K.P.B, Sulana Sundar C, Sunnitha S, Punithavathi K, preparation and characterization of polyvinyl alcohol thin films for organic thin-film transistors and biomedical applications, Kongunadu Research Journal. 5 (2018) 16–8.
DOI: 10.26524/krj264
Google Scholar
[29]
Chang A R, Preparation and Study of Polyvinyl Alcohol Fiber, Applied Mechanics and Materials. 727–728 (2015) 227–30.
DOI: 10.4028/www.scientific.net/amm.727-728.227
Google Scholar
[30]
Hou Y, Chen C, Liu K, Tu Y, Zhang L, Li Y, Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism, RSC Adv. 5 (2015) 24023–30.
DOI: 10.1039/c5ra01280e
Google Scholar
[31]
Zhao Y-N, Preparation of poly (vinyl alcohol)/silica nanocomposites by sol-gel method, e-Polymers. 13 (2013).
Google Scholar
[32]
Pingan H, Mengjun J, Yanyan Z, Ling H, A silica/PVA adhesive hybrid material with high transparency, thermostability, and mechanical strength, RSC Adv. 7 (2017) 2450–9.
DOI: 10.1039/c6ra25579e
Google Scholar
[33]
Nakane K, Yamashita T, Iwakura K, Suzuki F, Properties and structure of poly (vinyl alcohol)/silica composites, Journal of Applied Polymer Science. 74 (1999) 133–8.
DOI: 10.1002/(sici)1097-4628(19991003)74:1<133::aid-app16>3.0.co;2-n
Google Scholar
[34]
Matei A, Cernica I, Cadar O, Roman C Schiopu V, Synthesis and characterization of ZnO – polymer nanocomposites, Int J Mater Form. 1 (2008) 767–70.
DOI: 10.1007/s12289-008-0288-5
Google Scholar
[35]
Chalal S, Haddadine N, Bouslah N, Souilah S, Benaboura A, Barille R, Haroun A, Preparation Characterization and Thermal Behaviour of Carbopol-TiO2 Nanocomposites, OJOPM. (2014) 04 55–64.
DOI: 10.4236/ojopm.2014.43008
Google Scholar
[36]
García-Lecina E, García-Urrutia I, Díez J A, Fornell J, Pellicer E, Sort J, Codeposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation, Electrochimica Acta. 114 (2013) 859-867.
DOI: 10.1016/j.electacta.2013.04.088
Google Scholar
[37]
Kaur I, Ellis L-J, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E, Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization, JoVE (Journal of Visualized Experiments). e56074 (2017).
DOI: 10.3791/56074-v
Google Scholar
[38]
Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A, Preparation of eco-friendly UV-protective food packaging material by starch/TiO2 bio-nano composite: Characterization, International Journal of Biological Macromolecules. 95 (2017) 306–13.
DOI: 10.1016/j.ijbiomac.2016.11.065
Google Scholar
[39]
Chung S J, Leonard J P, Nettleship I, Lee J K, Soong Y, Martello D V, Chyu M K, Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion, Powder Technology. 194 (2009) 75-80.
DOI: 10.1016/j.powtec.2009.03.025
Google Scholar
[40]
Nguyen V S, Rouxel D, Hadji R, Vincent B, Fort Y, Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions, Ultrasonics Sonochemistry. 18 (2011) 382–8.
DOI: 10.1016/j.ultsonch.2010.07.003
Google Scholar
[41]
Matsuyama K and Mishima K, Particle Coating of Talc with TiO2 Nanoparticles Using Ultrasonic Irradiation in Liquid CO2, Ind. Eng. Chem. Res. 49 (2010) 1289–96.
DOI: 10.1021/ie9010832
Google Scholar
[42]
Unger K K, Surface Structure of Amorphous and Crystalline Porous Silicas: Status and Prospects, The Colloid Chemistry of Silica. Advances in Chemistry, ed H E Bergna (Washington DC: American Chemical Society). 234 (1994) 165–81.
DOI: 10.1021/ba-1994-0234.ch008
Google Scholar
[43]
Chen X, Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials, Journal of Materials Science Letters. 21 (2002) 1637–1639.
Google Scholar
[44]
Raju Ch L, Rao J L, Reddy B C V, Veera Brahmam K, Thermal and IR studies on copper doped polyvinyl alcohol, Bull Mater Sci. 30 (2007) 215–8.
DOI: 10.1007/s12034-007-0038-1
Google Scholar
[45]
Fathi E, Atyabi N, Imani M, Alinejad Z, Physically crosslinked polyvinyl alcohol–dextran blend xerogels: Morphology and thermal behavior, Carbohydrate Polymers. 84 (2011) 145–52.
DOI: 10.1016/j.carbpol.2010.11.018
Google Scholar
[46]
Santos C, Silva C J, Büttel Z, Guimarães R, Pereira S B, Tamagnini P, Zille A, Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method, Carbohydrate Polymers. 99 (2014) 584–92.
DOI: 10.1016/j.carbpol.2013.09.008
Google Scholar
[47]
Jessie Lue S, Chen J, Ming Yang J, Crystallinity and Stability of Poly (vinyl alcohol) ‐Fumed Silica Mixed Matrix Membranes, Journal of Macromolecular Science, Part B. 47 (2007) 39–51.
DOI: 10.1080/15568310701744133
Google Scholar
[48]
Tretinnikov O N, Zagorskaya S A, Effect of inorganic salts on the crystallinity of polyvinyl alcohol, J Appl Spectrosc. 78 (2012) 904–8.
DOI: 10.1007/s10812-012-9551-0
Google Scholar
[49]
Que W, Sun Z, Zhou Y, Lam Y L, Chan Y C, Kam C H, Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol-gel processing,)Zhou Y, Lam Y L, Chan Y C and Thin Solid Films. 359 (2000) 177-183.
DOI: 10.1016/s0040-6090(99)00746-4
Google Scholar
[50]
Plinio I, Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview, Journal of Non-Crystalline Solids. 316 (2003) 309-319.
DOI: 10.1016/s0022-3093(02)01637-x
Google Scholar
[51]
Tang S, Zou P, Xiong H, Tang H, Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films, Carbohydrate Polymers. 72 (2008) 521–6.
DOI: 10.1016/j.carbpol.2007.09.019
Google Scholar
[52]
Panchanathan K, Bellie P N, Kanakasabai P, Prakash N B, Preparation and Characterization of Crosslinked Pva/Tio2 Hybrid Membranes Containing Sulphonic Acid Groups for Direct Methanol Fuel Cell Applications, International Journal of Engineering Technology. 3 (2015) 20.
DOI: 10.1016/j.memsci.2004.04.010
Google Scholar
[53]
Ahmad J, Deshmukh K, Hägg M B, Influence of TiO2on the Chemical, Mechanical, and Gas Separation Properties of Polyvinyl Alcohol-Titanium Dioxide (PVA-TiO2) Nanocomposite Membranes. International Journal of Polymer Analysis and Characterization, 18(4) (2013) 287–296.
DOI: 10.1080/1023666x.2013.767080
Google Scholar
[54]
Mohanapriya S, Mumjitha M, PurnaSai K, Raj V, Fabrication and characterization of poly (vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications, Journal of the Mechanical Behavior of Biomedical Materials. 63 (2016) 141–56.
DOI: 10.1016/j.jmbbm.2016.06.009
Google Scholar
[55]
Chai JYH, Wong BT, Study of Light Scattering by TiO2, Ag, and SiO2 Nanofluids with Particle Diameters of 20-60 nm, Journal of Nano Research.60 (2019) 1-20.
DOI: 10.4028/www.scientific.net/jnanor.60.1
Google Scholar
[56]
Tang C-M, Tian Y-H, Hsu S-H, Poly (vinyl alcohol) Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization, Materials. 8 (2015) 4895–911.
DOI: 10.3390/ma8084895
Google Scholar
[57]
Dai S, Wu Y, Sakai T, Du Z, Sakai H, Abe M, Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide, Nanoskeleton Nanoscale Res Lett. 5 (2010) 1829–35.
DOI: 10.1007/s11671-010-9720-0
Google Scholar
[58]
Liu X, Chen X, Ren J, Zhang C, TiO2-KH550 Nanoparticle-Reinforced PVA/xylan Composite Films with Multifunctional Properties, Materials. 11 (2018) 1589.
DOI: 10.3390/ma11091589
Google Scholar
[59]
Mallakpour S, Barati A, Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles, Progress in Organic Coatings. 71 (2011) 391–8.
DOI: 10.1016/j.porgcoat.2011.04.010
Google Scholar
[60]
Ma H, Shi T, Song Q, Synthesis and Characterization of Novel PVA/SiO2-TiO2 Hybrid Fibers, Fibers. 2 (2014) 275–84.
DOI: 10.3390/fib2040275
Google Scholar
[61]
Shehap A M, Akil D S, Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films, Int. J. Nanoelectronics and Materials. 9 (2016) 17-36.
Google Scholar
[62]
Kaler V, Pandel U, Duchaniya R K, Development of TiO2/PVA nanocomposites for application in solar cells, Materials Today: Proceedings. 5 (2018) 6279–87.
DOI: 10.1016/j.matpr.2017.12.237
Google Scholar
[63]
Yang C-C, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, Journal of Membrane Science. 288 (2007) 51–60.
DOI: 10.1016/j.memsci.2006.10.048
Google Scholar
[64]
Betti N A, Thermogravimetric Analysis on PVA / PVP Blend Under Air Atmosphere, Eng. &Tech. Journal. 34 (2016) 2433-2442.
DOI: 10.30684/etj.34.13a.6
Google Scholar
[65]
Quan F, Chen L-L, Xia Y, Ji Q. Structure and Properties of PVA/SiO2 Interpenetrating Polymer Network Materials Prepared by the Sol-Gel Method. Polymers and Polymer Composites. February 17 (2009) 97-100.
DOI: 10.1177/096739110901700205
Google Scholar
[66]
Awada H, Daneualt C, Chemical modification of poly (vinyl alcohol) in water, applied science. 5 (2015) 840 – 850.
DOI: 10.3390/app5040840
Google Scholar
[67]
Dodda J M, Bělský P, Chmelař J, Remiš T, Smolná K, Tomáš M, Kullová L and Kadlec J, Comparative study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method, J Mater Sci. 50 (2015) 6477–90.
DOI: 10.1007/s10853-015-9206-7
Google Scholar
[68]
Bin Y, Mine M, Koganemaru A, Jiang X, Matsuo M, Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites, Polymer. 47 (2006) 1308–17.
DOI: 10.1016/j.polymer.2005.12.032
Google Scholar
[69]
Ren M, Frimmel F H, Abbt-Braun G, Multi-cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (PVA/TiO2) hybrid film, Journal of Molecular Catalysis A: Chemical. 400 (2015) 42–8.
DOI: 10.1016/j.molcata.2015.02.004
Google Scholar
[70]
Kotoky T, Dolui S K, Synthesis and Characterisation of Polyvinyl alcohol (PVA)/Silica Hybrid Composites Derived Through the Sol-Gel Method in Aqueous Medium: Effect of Acid Content, Silica Content and Viscosity of PVA on the Dispersion Characteristics of Silica and the Physical Properties of the Composites, Journal of Sol-Gel Science and Technology. 29 (2004) 107–14.
DOI: 10.1023/b:jsst.0000023011.15323.45
Google Scholar
[71]
Chen Y, Lin A, Gan F, Improvement of polyacrylate coating by filling modified nano-TiO2, Applied Surface Science. 252 (2006) 8635–40.
DOI: 10.1016/j.apsusc.2005.11.083
Google Scholar
[72]
El-Wakil N A, Hassan E A, Abou-Zeid R E, Dufresne A, Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging, Carbohydrate Polymers. 124 (2015) 337–46.
DOI: 10.1016/j.carbpol.2015.01.076
Google Scholar
[73]
Anon, Preparation of eco-friendly UV-protective food packaging material by starch/TiO2 bio-nano composite: Characterization International, Journal of Biological Macromolecules. 95 (2017) 306–13.
DOI: 10.1016/j.ijbiomac.2016.11.065
Google Scholar