Influence of Y3+ Doping on Dielectric and Optical Properties of Ce2S3 Spherical Shaped Nanostructures Synthesized by Chemical Precipitation Method

Article Preview

Abstract:

In the present investigation, Y3+ doped (5 wt. %, 10 wt. %, and 12 wt. %) cerium sesquisulfides (Ce2S3) nanoparticles (NPS) were synthesized by a simple chemical precipitation method. Thin films of Y3+:Ce2S3 NPs achieved on ITO (indium tin oxide) substrate. XRD (X-ray diffraction) patterns were used to estimate the size of the NPS, morphology index, texture coefficient, and lattice constants. The crystallite size was found to be in the range of 18-34 nm. UV-visible spectral studies were carried out in order to understand optical absorptivity, and optical band (Eg) of the as-synthesized nanostructures (NS). It has been observed that the red shift in the optical absorptivity and Eg value varies between 3.45 eV to 2.59 eV. Morphology and the presence of Y+3 were investigated by scanning electron microscope (SEM) and energy dispersive X-ray studies (EDX). However, agglomerated spherical-shaped NPs and homogeneous dispersion of Y3+ were observed in EDX analysis. Chemical constituents and nature of the doped NS were examined by X-ray photoelectron spectroscopy (XPS), and binding energies matched with Y 3d3/2, Y 3d5/2, Ce 3d3/2, Ce 3d5/2, O1s, C1s peaks. Y3+: Ce2S3 (12 wt. %) NS subjected for dielectric property studies in the frequency range of 10 Hz-10 MHz at room temperature (RT). High dielectric permittivity (Ɛ), and very low dielectric loss (tan δ) were observed at low frequency for 12 wt. % Y3+:Ce2S3 NS as compared with other doped NS. The as-synthesized NS can be used for high dielectric permittivity, low dielectric loss, and capacitor-related applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-51

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Othmer, Encyclopedia of Chemical Technology, Hoboken: John Wiley & Sons, 2010, pp.670-677.

Google Scholar

[2] J.N. Berte, Cerium Pigments. High Performance Pigments, Darmstadt: Wiley-VCH, 2002, pp.27-40.

DOI: 10.1002/3527600493.ch4

Google Scholar

[3] T.M.F. Marques, M.E. Strayer, A. Ghosh, A. Silva, O.P. Ferreira, K. Fujisawa, J.R.A. da Cunha, G.J.P. Abreu, M. Terrones, T.E. Mallouk, B.C. Viana, homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. J. Phys. Chem. Solid. 111 (2017) 335-342.

DOI: 10.1016/j.jpcs.2017.08.027

Google Scholar

[4] I.A. Kariper, Synthesis and characterization of cerium sulfide thin film. Prog. Nat. Sci. 24 (2014) 663-670.

Google Scholar

[5] R.C. Deus, M. Cilense, C.R. Foschini, M.A. Ramirez, E .Longo, A.Z. Simões, Influence of mineralizer agents on the growth of crystalline CeO2 nanospheres by the microwave-hydrothermal method J. Alloys Compd. 550 (2013) 245-251.

DOI: 10.1016/j.jallcom.2012.10.001

Google Scholar

[6] G. Chen, F. Zhu, X. Sun, S. Sun, R. Chen, Benign synthesis of ceria hollow nanocrystals by a template-free method. Cryst. Eng. Comm. 13 (2011) 2904-2908.

DOI: 10.1039/c0ce00758g

Google Scholar

[7] P. Maestro, D. Huguenin, Industrial applications of rare earths: which way for the end of the century. J. Alloys. Compd. 225 (1995) 520-528.

DOI: 10.1016/0925-8388(94)07095-4

Google Scholar

[8] J. Flahaut, K.A. Gschneider, Handbook on the Physics and Chemistry of Rare Earths,Elsevier, North Holland Amsterdam, 1979, 1–13.

Google Scholar

[9] J.M. Tomczak, L.V. Pourovskii, L. Vaugier, A. Georges, S. Biermann, Rare-earth vs. heavy metal pigments and their colors from first principles PNAS. 110, (2012) 904-907.

DOI: 10.1073/pnas.1215066110

Google Scholar

[10] Y. Q. Gao Y.M. Li, Z.M. Wang, Z.Y. Shen, & Z.X. Xie, Preparations and characterizations of γ-Ce2S3 red pigments from Pr-doped CeO2 with improved thermal stabilities. Appl. Phys. A. 124 (2), (2018) 1-7. https://doi.org/10.1007/s00339-018-1588-3.

DOI: 10.1007/s00339-018-1588-3

Google Scholar

[11] S. Hirai, K. Shimakage, Y. Saitou, T. Nishimura, Y. Uemura, M. Mitomo, L. R.S. Rawat, P. Arun, A.G. Vedeshwar, P. Lee, S. Lee, Effect of energetic ion irradiation on CdI2 films. J. Appl. Phys. 95 (2004) 7725.

DOI: 10.1063/1.1738538

Google Scholar

[12] A. Sarkar, S. Chaudhuri, A.K. Pal, Electrical and Optical Properties of Transparent Conducting ZnO Films. Phys. Status Solidi A. 119 (1990) K21-K25.

DOI: 10.1002/pssa.2211190145

Google Scholar

[13] R.S. Rawat, P. Arun, A.G. Vedeshwar, P. Lee, S. Lee, Effect of energetic ion irradiation on CdI2 films. J. Appl. Phys. 95 (2004) 7725-7730.

DOI: 10.1063/1.1738538

Google Scholar

[14] A. Vahed, D.A.R. Kay, Thermodynamics of rare earths in steelmaking. Metall. Mater. Trans. B. 7 (1976) 375-383.

DOI: 10.1007/bf02652708

Google Scholar

[15] K. Othmer, Encyclopedia of Chemical Technology, John Wiley & Sons, USA, 2007. Vol.1-26 p.1084.

Google Scholar

[16] Carbonaro, C.M. Chiriu, D. and P.C. Ricci, Are organic compounds good candidates to substitute rare earth materials in fluorescent applications?. Physica. Status. Solidi. (c), 13 (10‐12), (2016) 1017-1022.

DOI: 10.1002/pssc.201600130

Google Scholar

[17] Hu. S, Liu. B, Li. Z, Zhou. J and Sun. Z, Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments. Comput. Mater. Sci., 165 (2019) 51-58.

DOI: 10.1016/j.commatsci.2019.04.028

Google Scholar

[18] A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films, Results Phys. 6 (2016) 133-138.

DOI: 10.1016/j.rinp.2016.01.010

Google Scholar

[19] P. Hogan, High Temperature Synthesis of Sulfides of Cerium and Thermodynamic System Modeling. Master's thesis, University of Florida, Gainesville, FL, https://ufdc.ufl.edu/UFE0010471/00001. (2002).

Google Scholar

[20] E.D. Eastman, L. Brewer, L.A. Bromley, W.P. Gilles, L. Norman, Preparation and Properties of Refractory Cerium Sulfides. J. Am. Chem. Soc. 72 (1950) 2248-2250.

DOI: 10.1021/ja01161a102

Google Scholar

[21] M. Shkir, S. AlFaify, I.S. Yahia, V. Ganesh, H. Shoukry, Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications, Phys. B: Condens. Matter. 508 (2017) 41-46.

DOI: 10.1016/j.physb.2016.12.016

Google Scholar

[22] M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping, Sci. Rep. 7 (2017) 16091.

DOI: 10.1038/s41598-017-16086-x

Google Scholar

[23] R.M. German, P. Suri, SJ Park, Review: liquid phase sintering. J. Mater Sci. 44, (2009) 1-39.

Google Scholar

[24] M. Lopez Rios, P.P. Socorro Perdomo, I. Voiculescu, Effects of nickel content on the microstructure, microhardness and corrosion behaviour of high-entropy AlCoCrFeNix alloys. Sci Rep 10 (1) (2020) 1-11.

DOI: 10.1038/s41598-020-78108-5

Google Scholar

[25] E.K. Goharshadi, S. Samiee, P Nancarrow, Fabrication of cerium oxide nanoparticles: characterization and optical properties, J. Colloid. Int. Sci. 356, (2011) 473–480.

DOI: 10.1016/j.jcis.2011.01.063

Google Scholar

[26] H.J.L. Clabel, V.A.G. Rivera, M.S. Li, L.A.O. Nunes, E.R. Leite, W.H. Schreiner, E.J. Marega, Near-infrared light emission of Er3+ doped zirconium oxide thin films: An optical, structural and XPS study. J. Alloys .Compd. 619 (2015) 800-806.

DOI: 10.1016/j.jallcom.2014.09.007

Google Scholar

[27] J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 Prepared by a Sol−Gel Technique. Langmuir. 17 (2001) 202-210.

DOI: 10.1021/la000897d

Google Scholar

[28] T.S. Huang, Y.K. Su, P.C. Wang, Poly(methyl methacrylate) dielectric material applied in organic thin film transistors. Jpn. J. Appl. Phys. 47 (4S) (2008) 3185.

DOI: 10.1143/jjap.47.3185

Google Scholar

[29] K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, T. Varghese, Structural characterisation and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Ind. J. Pure Appl. Phy. 53, (2015) 596–603.

Google Scholar

[30] C. Li, M. Liu, Y. Zeng, D. Yu, Preparation and properties of yttrium-modified lead zirconate titanate ferroelectric thin films. Sens. Actuators. A. 58(3) (1997) 245-247.

DOI: 10.1016/s0924-4247(97)01400-3

Google Scholar

[31] R. Bazzi, A. Brenier, P. Perriat, O. Tillement, Optical properties of neodymium oxides at the nano meter scale. J. Lumin. 113(2005) 161-167.

DOI: 10.1016/j.jlumin.2004.09.120

Google Scholar

[32] A. Rana, O.P. Thakur, V. Kumar, Effect of Gd3+ substitution on dielectric properties of nano cobalt ferrite. Mater. Lett. 65 (2011) 3191-3192.

DOI: 10.1016/j.matlet.2011.06.076

Google Scholar

[33] Q. Meng, W. Li, Y. Zheng, Z. Zhang, Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J. Appl. Polym. Sci. 116, (2010) 2674-2684.

DOI: 10.1002/app.31777

Google Scholar

[34] S. Lavina, E. Negro, G. Pace, Dielectric low-k composite films based on PMMA, PVC and methylsiloxane-silica: synthesis, characterization and electrical properties. J. Non. Cryst. Solids. 353 (2007) 2878-2888.

DOI: 10.1016/j.jnoncrysol.2007.06.006

Google Scholar

[35] Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57 (2012) 660-723.

DOI: 10.1016/j.pmatsci.2011.08.001

Google Scholar

[36] T.S. Huang, Y.K. Su, P.C. Wang, Poly(methyl methacrylate) Dielectric Material Applied in Organic Thin Film Transistors. Jpn. J. Appl. Phys. 47 (2008) 3185-3188.

DOI: 10.1143/jjap.47.3185

Google Scholar

[37] I. Mejia, M. Estrada, Characterization of Polymethyl Methacrylate (PMMA) Layers for OTFTs Gate Dielectric, Proc. of the 6th International Caribbean Conference on Devices, Circuits and Systems, (2006) 375-377.

DOI: 10.1109/iccdcs.2006.250890

Google Scholar

[38] A.Y. Yassin, A.R. Mohamed, A.M. Abdelghany, E.M. Abdelrazek, Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J. Mater. Sci.: Mater. Electron. 29 (2018) 15931-15945.

DOI: 10.1007/s10854-018-9679-7

Google Scholar

[39] S.M. Ambalagi, S. Nagaraja, V.T. Manjula, S. Hogade, H.K. Inamdar, M.V.N. Ambikaprasad, B. Sannakki, dielectric properties of polyvinylpyrrolidone doped with copper oxide nanoparticle. Intl. J. Inn. Res. Sci. Engg. Technol. 5(2) (2016) 2033-2040.

Google Scholar