[1]
K. Othmer, Encyclopedia of Chemical Technology, Hoboken: John Wiley & Sons, 2010, pp.670-677.
Google Scholar
[2]
J.N. Berte, Cerium Pigments. High Performance Pigments, Darmstadt: Wiley-VCH, 2002, pp.27-40.
DOI: 10.1002/3527600493.ch4
Google Scholar
[3]
T.M.F. Marques, M.E. Strayer, A. Ghosh, A. Silva, O.P. Ferreira, K. Fujisawa, J.R.A. da Cunha, G.J.P. Abreu, M. Terrones, T.E. Mallouk, B.C. Viana, homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets. J. Phys. Chem. Solid. 111 (2017) 335-342.
DOI: 10.1016/j.jpcs.2017.08.027
Google Scholar
[4]
I.A. Kariper, Synthesis and characterization of cerium sulfide thin film. Prog. Nat. Sci. 24 (2014) 663-670.
Google Scholar
[5]
R.C. Deus, M. Cilense, C.R. Foschini, M.A. Ramirez, E .Longo, A.Z. Simões, Influence of mineralizer agents on the growth of crystalline CeO2 nanospheres by the microwave-hydrothermal method J. Alloys Compd. 550 (2013) 245-251.
DOI: 10.1016/j.jallcom.2012.10.001
Google Scholar
[6]
G. Chen, F. Zhu, X. Sun, S. Sun, R. Chen, Benign synthesis of ceria hollow nanocrystals by a template-free method. Cryst. Eng. Comm. 13 (2011) 2904-2908.
DOI: 10.1039/c0ce00758g
Google Scholar
[7]
P. Maestro, D. Huguenin, Industrial applications of rare earths: which way for the end of the century. J. Alloys. Compd. 225 (1995) 520-528.
DOI: 10.1016/0925-8388(94)07095-4
Google Scholar
[8]
J. Flahaut, K.A. Gschneider, Handbook on the Physics and Chemistry of Rare Earths,Elsevier, North Holland Amsterdam, 1979, 1–13.
Google Scholar
[9]
J.M. Tomczak, L.V. Pourovskii, L. Vaugier, A. Georges, S. Biermann, Rare-earth vs. heavy metal pigments and their colors from first principles PNAS. 110, (2012) 904-907.
DOI: 10.1073/pnas.1215066110
Google Scholar
[10]
Y. Q. Gao Y.M. Li, Z.M. Wang, Z.Y. Shen, & Z.X. Xie, Preparations and characterizations of γ-Ce2S3 red pigments from Pr-doped CeO2 with improved thermal stabilities. Appl. Phys. A. 124 (2), (2018) 1-7. https://doi.org/10.1007/s00339-018-1588-3.
DOI: 10.1007/s00339-018-1588-3
Google Scholar
[11]
S. Hirai, K. Shimakage, Y. Saitou, T. Nishimura, Y. Uemura, M. Mitomo, L. R.S. Rawat, P. Arun, A.G. Vedeshwar, P. Lee, S. Lee, Effect of energetic ion irradiation on CdI2 films. J. Appl. Phys. 95 (2004) 7725.
DOI: 10.1063/1.1738538
Google Scholar
[12]
A. Sarkar, S. Chaudhuri, A.K. Pal, Electrical and Optical Properties of Transparent Conducting ZnO Films. Phys. Status Solidi A. 119 (1990) K21-K25.
DOI: 10.1002/pssa.2211190145
Google Scholar
[13]
R.S. Rawat, P. Arun, A.G. Vedeshwar, P. Lee, S. Lee, Effect of energetic ion irradiation on CdI2 films. J. Appl. Phys. 95 (2004) 7725-7730.
DOI: 10.1063/1.1738538
Google Scholar
[14]
A. Vahed, D.A.R. Kay, Thermodynamics of rare earths in steelmaking. Metall. Mater. Trans. B. 7 (1976) 375-383.
DOI: 10.1007/bf02652708
Google Scholar
[15]
K. Othmer, Encyclopedia of Chemical Technology, John Wiley & Sons, USA, 2007. Vol.1-26 p.1084.
Google Scholar
[16]
Carbonaro, C.M. Chiriu, D. and P.C. Ricci, Are organic compounds good candidates to substitute rare earth materials in fluorescent applications?. Physica. Status. Solidi. (c), 13 (10‐12), (2016) 1017-1022.
DOI: 10.1002/pssc.201600130
Google Scholar
[17]
Hu. S, Liu. B, Li. Z, Zhou. J and Sun. Z, Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments. Comput. Mater. Sci., 165 (2019) 51-58.
DOI: 10.1016/j.commatsci.2019.04.028
Google Scholar
[18]
A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO: Al thin films, Results Phys. 6 (2016) 133-138.
DOI: 10.1016/j.rinp.2016.01.010
Google Scholar
[19]
P. Hogan, High Temperature Synthesis of Sulfides of Cerium and Thermodynamic System Modeling. Master's thesis, University of Florida, Gainesville, FL, https://ufdc.ufl.edu/UFE0010471/00001. (2002).
Google Scholar
[20]
E.D. Eastman, L. Brewer, L.A. Bromley, W.P. Gilles, L. Norman, Preparation and Properties of Refractory Cerium Sulfides. J. Am. Chem. Soc. 72 (1950) 2248-2250.
DOI: 10.1021/ja01161a102
Google Scholar
[21]
M. Shkir, S. AlFaify, I.S. Yahia, V. Ganesh, H. Shoukry, Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications, Phys. B: Condens. Matter. 508 (2017) 41-46.
DOI: 10.1016/j.physb.2016.12.016
Google Scholar
[22]
M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping, Sci. Rep. 7 (2017) 16091.
DOI: 10.1038/s41598-017-16086-x
Google Scholar
[23]
R.M. German, P. Suri, SJ Park, Review: liquid phase sintering. J. Mater Sci. 44, (2009) 1-39.
Google Scholar
[24]
M. Lopez Rios, P.P. Socorro Perdomo, I. Voiculescu, Effects of nickel content on the microstructure, microhardness and corrosion behaviour of high-entropy AlCoCrFeNix alloys. Sci Rep 10 (1) (2020) 1-11.
DOI: 10.1038/s41598-020-78108-5
Google Scholar
[25]
E.K. Goharshadi, S. Samiee, P Nancarrow, Fabrication of cerium oxide nanoparticles: characterization and optical properties, J. Colloid. Int. Sci. 356, (2011) 473–480.
DOI: 10.1016/j.jcis.2011.01.063
Google Scholar
[26]
H.J.L. Clabel, V.A.G. Rivera, M.S. Li, L.A.O. Nunes, E.R. Leite, W.H. Schreiner, E.J. Marega, Near-infrared light emission of Er3+ doped zirconium oxide thin films: An optical, structural and XPS study. J. Alloys .Compd. 619 (2015) 800-806.
DOI: 10.1016/j.jallcom.2014.09.007
Google Scholar
[27]
J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 Prepared by a Sol−Gel Technique. Langmuir. 17 (2001) 202-210.
DOI: 10.1021/la000897d
Google Scholar
[28]
T.S. Huang, Y.K. Su, P.C. Wang, Poly(methyl methacrylate) dielectric material applied in organic thin film transistors. Jpn. J. Appl. Phys. 47 (4S) (2008) 3185.
DOI: 10.1143/jjap.47.3185
Google Scholar
[29]
K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, T. Varghese, Structural characterisation and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Ind. J. Pure Appl. Phy. 53, (2015) 596–603.
Google Scholar
[30]
C. Li, M. Liu, Y. Zeng, D. Yu, Preparation and properties of yttrium-modified lead zirconate titanate ferroelectric thin films. Sens. Actuators. A. 58(3) (1997) 245-247.
DOI: 10.1016/s0924-4247(97)01400-3
Google Scholar
[31]
R. Bazzi, A. Brenier, P. Perriat, O. Tillement, Optical properties of neodymium oxides at the nano meter scale. J. Lumin. 113(2005) 161-167.
DOI: 10.1016/j.jlumin.2004.09.120
Google Scholar
[32]
A. Rana, O.P. Thakur, V. Kumar, Effect of Gd3+ substitution on dielectric properties of nano cobalt ferrite. Mater. Lett. 65 (2011) 3191-3192.
DOI: 10.1016/j.matlet.2011.06.076
Google Scholar
[33]
Q. Meng, W. Li, Y. Zheng, Z. Zhang, Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J. Appl. Polym. Sci. 116, (2010) 2674-2684.
DOI: 10.1002/app.31777
Google Scholar
[34]
S. Lavina, E. Negro, G. Pace, Dielectric low-k composite films based on PMMA, PVC and methylsiloxane-silica: synthesis, characterization and electrical properties. J. Non. Cryst. Solids. 353 (2007) 2878-2888.
DOI: 10.1016/j.jnoncrysol.2007.06.006
Google Scholar
[35]
Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57 (2012) 660-723.
DOI: 10.1016/j.pmatsci.2011.08.001
Google Scholar
[36]
T.S. Huang, Y.K. Su, P.C. Wang, Poly(methyl methacrylate) Dielectric Material Applied in Organic Thin Film Transistors. Jpn. J. Appl. Phys. 47 (2008) 3185-3188.
DOI: 10.1143/jjap.47.3185
Google Scholar
[37]
I. Mejia, M. Estrada, Characterization of Polymethyl Methacrylate (PMMA) Layers for OTFTs Gate Dielectric, Proc. of the 6th International Caribbean Conference on Devices, Circuits and Systems, (2006) 375-377.
DOI: 10.1109/iccdcs.2006.250890
Google Scholar
[38]
A.Y. Yassin, A.R. Mohamed, A.M. Abdelghany, E.M. Abdelrazek, Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J. Mater. Sci.: Mater. Electron. 29 (2018) 15931-15945.
DOI: 10.1007/s10854-018-9679-7
Google Scholar
[39]
S.M. Ambalagi, S. Nagaraja, V.T. Manjula, S. Hogade, H.K. Inamdar, M.V.N. Ambikaprasad, B. Sannakki, dielectric properties of polyvinylpyrrolidone doped with copper oxide nanoparticle. Intl. J. Inn. Res. Sci. Engg. Technol. 5(2) (2016) 2033-2040.
Google Scholar