Low Velocity Impact Behaviour of Composite Laminates Containing TiC and ZrC Nanoparticles in Resin System

Article Preview

Abstract:

Composite structures utilized in defence and aerospace applications might be subjected to impacts due to bird strike, tool dropping and bullet penetration. One of the approaches to this problem is to add nano tubes and nano particles to resin systems in order to improve bonding between fibres and matrix materials. Different nano-particles or nano-tubes of clays, alumina, silica, carbon and graphene have been analysed in composite systems in the literature so far because of the improved mechanical properties. In this study, the low velocity impact behaviour of the aramid fibre reinforced epoxy composite plates, containing two new nano-particles of TiC and ZrC which are not studied formerly, are searched experimentally. After the low velocity impact tests, it is concluded that plates containing titanium carbide nano-particles and zirconium nano-particles yielded 19 % and 4 % respectively less penetration in comparison with particle free plates. In other words, titanium carbide nano-particles contained plates showed more resistance against the impact by 19 % against to particle free plates. These results showed that TiC and ZrC nano particles might be also good contributors for the impact resistance of composite structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-35

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nayak, R.K. Nayak and et al., Effect of nanofillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites- a review, Advances in Materials and Processing Technologies, (2021).

DOI: 10.1080/2374068X.2021.1945293

Google Scholar

[2] Y. Huang, B. Karami, D. Shahsavari and A. Tounsi, Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro‑shell panels, Archives of Civil and Mechanical Engineering, 21 (2021) 139.

DOI: 10.1007/s43452-021-00291-7

Google Scholar

[3] R. Zerrouki, A. Karas, M. Zidour, A. A. Bousahla, A. Tounsi and et al, Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano composite beam, Structural Engineering and Mechanics, 78 ( 2) (2021) 117-124. DOI: org/10.12989/sem.2021.78.2.117.

Google Scholar

[4] F. Heidari, K. Taheri, M. Sheybani, M.J. Janghorban and A. Tounsi, On the mechanics of nano composites reinforced by wavy/defected/aggregated nanotubes, Steel and Composite Structures, 38, (2021) 533-545. DOI:org/10.12989/scs.2021.38.5.533.

Google Scholar

[5] E. Arshid, M. Khorasani, Z. Soleimani‑Javid, S. Amir, and A. Tounsi, Porosity-dependent vibration analysis of FG microplates embedded by polymeric nano composite patches considering hygrothermal effect via an innovative plate theory, Engineering with Computers, (2021). DOI:org/10.1007/s00366-021-01382-y.

DOI: 10.1007/s00366-021-01382-y

Google Scholar

[6] M.S. and S.S. Kumar, Ballistic performance of synergistically toughened Kevlar/epoxy composite targets reinforced with multi-walled carbon nanotubes/graphene Nanofillers, Polymer Composıtes, 43 (2) (2022) 782-797.

DOI: 10.1002/pc.26409

Google Scholar

[7] A.J. Varghese and A.A. Ronald, Low Velocity Impact, Fatigue and Visco-elastic Behaviour of Carbon/E-glass Intra-ply fibre-Reinforced Nanosilica Toughened Epoxy Composite, Silicon, 13 (5) (2020) 1655-1661.

DOI: 10.1007/s12633-020-00566-3

Google Scholar

[8] P. Dharmavarapu and M.B.S.S Reddy, Mechanical, Low Velocity Impact, fatigue and Tribology Behaviour of Silane Grafted Aramid Fibre and Nanosilica Toughened Epoxy Composite, Silicon, 14(6), (2021) 1741-1750.

DOI: 10.1007/s12633-020-00567-2

Google Scholar

[9] P.M. Ajayan, L.S. Schadler and P.V. Braun, Nano Composite Science and Technology, Wiley-VCH Press, Germany, (2003).

Google Scholar

[10] P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Nano Composite: Synthesis, Structure, Properties and New Application Opportunities, Materials Research, 12 (1) (2009) 1-39, DOI: 10.1590 / S1516-14392009000100002.

DOI: 10.1590/s1516-14392009000100002

Google Scholar

[11] A. Osman, A. Elhakeem et al, Influence of Different Nano Structured Filler on the Performance of Epoxy Nano Composites. Nano Hybrids and Composites, 6 (2020) 51–60.

DOI: 10.4028/www.scientific.net/nhc.29.51

Google Scholar

[12] J. Cesar D. Santos, L.M. G. Vieira and et al, Impact Behaviour of Hybrid Carbon Fibre Composites Reinforced with Silica Micro-and Functionalized Nanoparticles, Nano Hybrids and Composites, 21 (2018) 1-9.

DOI: 10.4028/www.scientific.net/nhc.21.1

Google Scholar

[13] N. K. Kamada, K.N.S. Suman and et al, Investigation on Mechanical, Thermal and Bonding Properties of MWCNTs Reinforced Aramid/Epoxy Composite, Nano Hybrids and Composites, 30 (2020) 27–40.

DOI: 10.4028/www.scientific.net/nhc.30.27

Google Scholar

[14] H.B. Kaybal, H. Ulus, O. Demir and et al, Effects of Alumina Nanoparticles on Dynamic Impact Responses of Carbon Fibre Reinforced Epoxy Matrix Nano Composites. Engineering Science and Technology, an International Journal, 21(3) (2018) 399-407.

DOI: 10.1016/j.jestch.2018.03.011

Google Scholar

[15] M.H. Meybodi, S.S. Samandari, M. Sadighi and M.R. Bagheri, Low Velocity Impact Response of a Nano Composite Beam Using an Analytical Model, Latin American Journal of Solids and Structures, 12 (2) (2015) 333-354.

DOI: 10.1590/1679-78251346

Google Scholar

[16] T.H. Mahdi, E. Islam, M.V. Hosur and S. Jeelani, Low Velocity Impact Performance of Carbon Fibre Reinforced Plastics Modified with Carbon Nanotube, Nanoclay and Hybrid Nanoparticles. Journal of Reinforced Plastics and Composites, 36(9) (2017) 696-713.

DOI: 10.1177/0731684417693429

Google Scholar

[17] A.C. Tatar, H.B. Kaybal, H. Ulus and et al., Evaluation of Low Velocity Impact Behaviour of Epoxy Nano Composite Laminates Modified with SiO2 Nanoparticles at Cryogenic Temperatures, Journal of Research on Engineering Structures and Materials, 5(2) (2019) 115-125. DOI 10.17515/resm2018.55is0704.

DOI: 10.17515/resm2018.55is0704

Google Scholar

[18] E.M. Soliman, M.P. Sheyka and M.R. Taha, Low Velocity Impact of Thin Woven Carbon Fabric Composites Incorporating Multi Walled Carbon Nanotubes, International Journal of Impact Engineering, 47 (2012) 39-47.

DOI: 10.1016/j.ijimpeng.2012.03.002

Google Scholar

[19] N. Tsartsaris, M. Meo and et al., Low Velocity Impact Behaviour of Fibre Metal Laminates. Journal of Composite Materials, 45(7) (2011) 803-814.

DOI: 10.1177/0021998310376108

Google Scholar

[20] Z. Asaee, M. Mohamed, M., D.D. Cicco and F. Taheri, Low Velocity Impact Response and Damage Mechanism of 3D Fibre-Metal Laminates Reinforced with Amino-Functionalized Graphene Nano Platelets, International Journal of Composite Materials, 7(1) (2017) 20-36.

Google Scholar

[21] S. Patil, D.M. Reddy and M. Reddy, Low Velocity Impact Analysis on Composite Structures. AIP Conference Proceedings, 1943 (1) (2018).

DOI: 10.1063/1.5029585

Google Scholar

[22] J.L. Chen, S. Lee, J.S. Wu and F. Elaldi, Manufacture of Carbon Fibre Nano Based Epoxy Composite Laminates using a Vacuum-Assisted Resin Transfer Mould. Canadian International Conference on Composite Materials, 2017. CANCOM2017, Ottawa CANADA.

Google Scholar