Formation of Nanocrystalline ZnO-TiO2 Hybrid Oxides through Hydrothermal Route

Article Preview

Abstract:

In this study, nanocrystalline ZnO-TiO2 hybrid metal oxide was successfully synthesized using a low-temperature hydrothermal method at 90 °C for 24 hours. Zinc nitrate hexahydrate, titanium (IV) oxide, and sodium hydroxide were employed as reactants without any additives. The synthesized ZnO-TiO2 hybrid nanomaterial was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanningelectron microscopy (FE-SEM), and Energy dispersive X-ray spectroscopy (EDAX). XRD results confirmed the presence of hexagonal zincite (ZnO) and rutile (TiO2) phases, with crystallite sizes of 60.28 nm and 48.12 nm, respectively. FT-IR analysis identified metal-oxide stretching vibrations, while FESEM revealed a granular and rod-like morphology, consistent with XRD results. EDAX confirmed the elemental purity of the hybrid metaloxide, detecting only Zn, Ti, and O elements. Due to its high crystallinity and controlled morphology, the ZnO-TiO2 hybrid nanomaterial has potential applications in gas sensing, environmental remediation, and energy-related fields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Patil, R.B. Pedhekar, S. Patil, F.C. Raghuwanshi, "Thick film gas sensors made from Mn doped zinc oxide nanorods for H2S gas", Materials Today: Proceedings, 12 (2020) 1865-1871.

DOI: 10.1016/j.matpr.2020.05.293

Google Scholar

[2] J.A. Rodriguez, D. Stacchiola, "Catalysis and the nature of mixed-metal oxides at the nanometer level: special properties of MOx/TiO2 (110) {M=V, W, Ce} surfaces", Phys. Chem. Chem. Phys., 12 (2010) 9557–9565.

DOI: 10.1039/c003665j

Google Scholar

[3] M.M. Rahman, M.M. Alam, A.M. Asiria, "Potential application of mixed metal oxide nanoparticle-embedded glassy carbon electrode as a selective 1,4-dioxane chemical sensor probe by an electrochemical approach", RSC Adv., 9 (2019) 42050-42061.

DOI: 10.1039/c9ra09118a

Google Scholar

[4] N. Rasouli, M. Movahedi, M. Doudi, "Synthesis and characterization of inorganic mixed metal oxide nanoparticles derived from Zn-Al layered double hydroxide and their antibacterial activity", Surfaces and Interfaces, 6 (2017) 110-115.

DOI: 10.1016/j.surfin.2016.11.007

Google Scholar

[5] J. Wang, P. Wang, A. Yoshida, Q. Zhao, S. Li, X. Hao, A. Abudula, G. Xu, G. Guan, "Mn-Co oxide decorated on Cu nanowires as efficient catalysts for catalytic oxidation of toluene", Carbon Resources Conversion, 3 (2020) 36-45.

DOI: 10.1016/j.crcon.2020.02.001

Google Scholar

[6] L. Durai, A. Gopalakrishnan, S. Badhulika, "One-pot hydrothermal synthesis of NiCoZn a ternary mixed metal oxide nanorod based electrochemical sensor for trace level recognition of dopamine in biofluids", Materials Letters, 298 (2021) 130044.

DOI: 10.1016/j.matlet.2021.130044

Google Scholar

[7] G. Wu, X. Liang, L. Zhang, Z. Tang, A. M. Mohammad, H. Zhao, X. Su, "Fabrication of high stable metal oxide hollow nanospheres and their catalytic activity towards 4-nitrophenol reduction", ACS Applied Materials & Interfaces, 12 (2017) 1-28.

DOI: 10.1021/acsami.7b03120

Google Scholar

[8] D. Wu, J. Ran, S. Zhong, M. Wen, J. Zhou, Q. Zhu, Q. Wu, FeNi3/NiFe-Mixed Metal Oxide Heterostructured Nanosheets for Catalytic Nitro-Amination", ACS Appl. Nano Mater, 4 (2021) 7739-7745.

DOI: 10.1021/acsanm.1c00978

Google Scholar

[9] H. Zhang, J. Qin, Z. Gao, Q. Meng, G. He, H, Chen, "Magnetically separable graphene-based Ni–Fe mixed metal oxide nanocubes derived from a Prussian- blue analogue: synthesis, structure and application in oxidative degradation of bisphenol A", Catal. Sci. Technol., 11 (2021) 459–463.

DOI: 10.1039/d0cy01827a

Google Scholar

[10] R.B. Pedhekar, F.C. Raghuwanshi, "CeO2 activated ZnO-TiO2 thick film for CO2 gas sensor", International Journal of Engineering Science Invention, 6 (2017) 20-28.

Google Scholar

[11] V.S. Kalyamwar, F.C. Raghuwanshi, "TiO2 modified ZnO thick film resistors as ammonia gas sensors", Adv. Mat. Lett., 12 (2013) 895-898.

DOI: 10.5185/amlett.2013.4456

Google Scholar

[12] Y. Patil, R.B. Pedhekar, S. Patil, S. Kosalge, F.C. Raghuvanshi, "Chemically synthesized ZnO and Cd-ZnO thick films as Ethanol sensor", IOP Conf. Ser.: Mater. Sci. Eng, 1126 (2021) 012046.

DOI: 10.1088/1757-899x/1126/1/012046

Google Scholar

[13] N. Turkten, M. Bekbolet, "Photocatalytic Performance of Titanium Dioxide and Zinc Oxide Binary System on Degradation of Humic Matter", Journal of Photochemistry & Photobiology, A: Chemistry, 183 (2020) 112748.

DOI: 10.1016/j.jphotochem.2020.112748

Google Scholar

[14] W.L. Kostedt, A.A. Ismail, D.W. Mazyck, "Impact of Heat Treatment and Composition of ZnO-TiO2 Nanoparticles for Photocatalytic Oxidation of an Azo Dye", Ind. Eng. Chem. Res., 47 (2008) 1483-1487.

DOI: 10.1021/ie071255p

Google Scholar

[15] S. Hernandez, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso, G. Saracco, "Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar driven water splitting", Phys. Chem. Chem. Phys, 17 (2015) 7775-7786.

DOI: 10.1039/c4cp05857g

Google Scholar

[16] P. Chaiyo, C. Makhachan, J. Nutariya, O. Thiabgoh, S. Sumran, S. Pukird, "Electrical and sensitivity properties of ZnO/TiO2 heterojunction nanocomposites for ammonia gas sensor", J. Phys.: Conf. Ser., 1259 (2019) 012005.

DOI: 10.1088/1742-6596/1259/1/012005

Google Scholar

[17] S.W. Himmah, M Diantoro, N.A. Astarini, S.G. Tiana, Nasikhudin, A. Hidayat, A. Taufiq, "Structural, morphological, optical, and electrical properties of TiO2/ZnO rods multilayer films as photoanode on dye-sensitized solar cells", J. Phys.: Conf. Ser., 1816 (2021) 012095.

DOI: 10.1088/1742-6596/1816/1/012095

Google Scholar

[18] O.G. Ellert, S.A. Nikolaev, D.A. Maslov, O.V. Bukhtenko, Y.V. Maksimov, V.K. Imshennik, D.I. Kirdyankin, A.A. Averin, M.V. Tsodikov, "Structure, Magnetic and Photochemical Properties of Fe-TiO2 Nanoparticles Stabilized in Al2O3 Matrix", Russian Journal of Inorganic Chemistry, 63 (2018) 1403-1413.

DOI: 10.1134/s0036023618110049

Google Scholar

[19] P. Akhter, S. Nawaz, I. Shafiq, A. Nazir, S. Shafique, F. Jamil, Y. Park, M. Hussain, "Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites", Molecular Catalysis, 535 (2023) 112896.

DOI: 10.1016/j.mcat.2022.112896

Google Scholar

[20] V.K. Landge, C.M. Huang, V.S. Hakke, S.H. Sonawane, S. Manickam, M.C. Hsieh, "Solar-Energy-Driven Cu-ZnO/TiO2 Nanocomposite Photocatalyst for the Rapid Degradation of Congo Red Azo Dye", Catalysts, 12 (2022) 605.

DOI: 10.3390/catal12060605

Google Scholar

[21] R.B. Pedhekar, F.C. Raghuwanshi, V.D. Kapse, "Liquid petroleum gas sensing performance enhanced by CuO modification of nanocrystalline ZnO-TiO2", Materials Science-Poland, 34 (2016) 571-581.

DOI: 10.1515/msp-2016-0083

Google Scholar

[22] Z.L. Wang, "ZnO nanowire and nanobelt platform for nanotechnology", Materials Science and Engineering, 64 (2009) 33-71.

DOI: 10.1016/j.mser.2009.02.001

Google Scholar

[23] Y. Wang, T. Wu, Y. Zhou, C. Meng, W. Zhu, L. Liu, "TiO2-Based Nano heterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects", Sensors, 17 (2017) 1971.

DOI: 10.3390/s17091971

Google Scholar

[24] A.H. Hirad, A.A. Alarfaj, B. Ravindran, S.P. Narasimhamoorthi, "Betanin inspired zinc oxide nanoparticles: The potential antioxidant and anticancer activity against human lung cancer cell line (A549)", Biochemical and Biophysical Research Communications, 742 (2025) 151019.

DOI: 10.1016/j.bbrc.2024.151019

Google Scholar

[25] D.R. Jaishi, I. Ojha, G. Bhattarai, R. Baraili, I. Pathak, D.R. Ojha, D.K. Shrestha, K.R. Sharma, "Plant-mediated synthesis of zinc oxide (ZnO) nanoparticles using Alnus nepalensis D. Don for biological applications", Heliyon, 10 (2024) e39255.

DOI: 10.1016/j.heliyon.2024.e39255

Google Scholar

[26] P. Nandi, D. Das, "Morphological variations of ZnO nanostructures and its influence on the photovoltaic performance when used as photoanodes in dye sensitized solar cells", Solar Energy Materials and Solar Cells, 243 (2022) 111811.

DOI: 10.1016/j.solmat.2022.111811

Google Scholar

[27] Z. Alqarni, "Eco-friendly synthesis of ZnO nanoparticles and ZnO@PVA nanofibers for enhanced hydrogen generation and CO2 conversion", J Sol-Gel Sci Technol, 112 (2024) 30-37.

DOI: 10.1007/s10971-024-06630-3

Google Scholar

[28] Y.E. Tasisa, T.K. Sarma, R. Krishnaraj, S.Sarma, "Band gap engineering of titanium dioxide (TiO2) nanoparticles prepared via green route and its visible light driven for environmental remediation", Results in Chemistry, 11 (2024) 101850.

DOI: 10.1016/j.rechem.2024.101850

Google Scholar

[29] M.Y. Vasel, A.M. Alam, M. Noroozifar, Shabzendeha, S. Gholizadeh, E. Valadbeigi, "Mechanochemical synthesis and characterization of poly[(aniline-co-N-(4-sulfophenyl) aniline] nanofibers and its nanocomposite with titanium dioxide nanoparticles and study of their efficiency in hybrid solar cell", 309 (2024) 177767.

DOI: 10.1016/j.synthmet.2024.117767

Google Scholar

[30] S. Gocer, B.Z. Zaimoglu, K. Cırık, "Effects of suspended titanium dioxide (TiO2) nanoparticles on cake layer formation in submerged anaerobic membrane bioreactor (AnMBR) for landfill leachate treatment (LFL)", Process Biochemistry, 146 (2024) 525-538.

DOI: 10.1016/j.procbio.2024.09.022

Google Scholar

[31] R.B. Pedhekar, F.C. Raghuwanshi, V.D. Kapse, "Low Temperature H2S Gas Sensor Based on Fe2O3 Modified ZnO-TiO2 Thick Film", Int. J. Mater. Sci. Eng. 3 (2015) 219–230.

DOI: 10.17706/ijmse.2015.3.3.219-230

Google Scholar

[32] L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva, O.J. Ilegbusi, "Conductivity and sensing properties of In2O3+ZnO mixed nanostructured films: Effect of composition and temperature", Sensors and Actuators B, 187 (2013) 514-521.

DOI: 10.1016/j.snb.2013.03.017

Google Scholar

[33] J. Park, J. Lee, M.S. Choi, J.S. Huh, "Formaldehyde Gas Sensing Characteristics of ZnO-TiO2 Gas Sensors", chemosensors, 140 (2023) 140.

DOI: 10.3390/chemosensors11020140

Google Scholar

[34] N. Pezhooli, J. Rahimi, F. Hasti, A. Maleki, "Synthesis and evaluation of composite TiO2@ZnO quantum dots on hybrid nanostructure perovskite solar cell" Scientifc Reports, 12 (2022) 9885.

DOI: 10.1038/s41598-022-13903-w

Google Scholar

[35] M.T. Yassin, A. Negi, S. Ringwal, M. Pandey, P. Sati, P.K. Tripathi, "Enhancing wastewater treatment: DFT and experimental insights into ZnO-implanted TiO2 Z-scheme photocatalyst mediated via Smilax aspera", Optical Materials, 145 (2024) 118532.

DOI: 10.1016/j.optmat.2024.115832

Google Scholar

[36] K. Kusdianto, D.F. Nugraha, A. Sekarnusa, S. Madhania, S. Machmudah, S. Winardi, "ZnO-TiO2 nanocomposite materials: fabrication and its applications", IOP Conf. Series: Materials Science and Engineering, 1053 (2021) 012024.

DOI: 10.1088/1757-899x/1053/1/012024

Google Scholar

[37] R. Ghamarpoor, A. Fallah, M. Jamshidi, "A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2‐Based Photocatalysts for Photodegradation of Contaminants", ACS Omega, 9 (2024) 25457-25492.

DOI: 10.1021/acsomega.3c08717

Google Scholar

[38] D. Mijatovic, J.C.T. Eijkel, A.V.D. Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up-a review", Lab Chip, 5 (2005) 492-500.

DOI: 10.1039/b416951d

Google Scholar

[39] H.D. Yu, M.D. Regulacio, E. Ye, M.Y. Han, "Chemical routes to top-down nanofabrication", Chem. Soc. Rev, 42 (2013) 6006-6018.

DOI: 10.1039/c3cs60113g

Google Scholar

[40] X. Fu, J. Cai, X. Zhang, W.D. Li, H. Ge, Y. Hu, "Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications", Advanced Drug Delivery Reviews, 132 (2018) 169-187.

DOI: 10.1016/j.addr.2018.07.006

Google Scholar

[41] K.H. Smith, E.T. Montes, M. Poch, A. Mata, "Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials", Chem. Soc. Rev., 40 (2011) 4563-4577.

DOI: 10.1039/c1cs15064b

Google Scholar

[42] S. Kumar, P. Bhushan, S. Bhattacharya, "Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others", Environmental, Chemical and Medical Sensors, Energy, Environment, and Sustainability. Springer, 2017, pp.167-198.

DOI: 10.1007/978-981-10-7751-7_8

Google Scholar

[43] N. Bayal, P. Jeevanandam, "Synthesis of TiO2-MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties", Ceramics International, 40 (2014) 15463-15477.

DOI: 10.1016/j.ceramint.2014.06.122

Google Scholar

[44] R. Sharma, R. Ghose, "Synthesis of Co3O4-ZnO mixed metal oxide nanoparticles by homogeneous precipitation method", Journal of Alloys and Compounds, 686 (2016) 64-73.

DOI: 10.1016/j.jallcom.2016.05.298

Google Scholar

[45] R. Sharma, D. Kumar, R. Ghose, "Synthesis of nanocrystalline ZnO–NiO mixed metal oxide powder by homogeneous precipitation method", Ceramics International, 42 (2015) 4090-4098.

DOI: 10.1016/j.ceramint.2015.11.081

Google Scholar

[46] V.S. Kalyamwar, F.C. Raghuwanshi, N.L. Jadhao, A.J. Gadewar, "Zinc Oxide Nanostructure Thick Films as H2S Gas Sensors at Room Temperature", Journal of Sensor Technolog, 3 (2013) 31-35.

DOI: 10.4236/jst.2013.33006

Google Scholar

[47] L. Wang, X. Fu, Y. Han, E. Chang, H. Wu, H. Wang, K. Li, X. Qi, "Preparation, Characterization, and Photocatalytic Activity of TiO2/ZnO Nanocomposites", Hindawi Publishing Corporation Journal of Nanomaterials, 2013 (2013) 1-6.

DOI: 10.1155/2013/321459

Google Scholar

[48] B. Mazinani, N.M. Zalani, M. Sakaki, K. Yanagisawa, "Hydrothermal synthesis of mesoporous TiO2- ZnO nanocomposite for photocatalytic degradation of methylene blue under UV and visible light", Journal of Materials Science: Materials in Electronics, 29 (2018) 11945-11950.

DOI: 10.1007/s10854-018-9296-5

Google Scholar

[49] V.G. Deshmane, S.L. Owen, R.Y. Abrokwah, D. Kuila, "Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steamer forming of methanol", Journal of Molecular Catalysis A: Chemical, 408 (2015) 202-213.

DOI: 10.1016/j.molcata.2015.07.023

Google Scholar

[50] K. Karthik, S.K. Pandian, N.V. Jaya, "Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method", Applied Surface Science, 256 (2010) 6829-6833.

DOI: 10.1016/j.apsusc.2010.04.096

Google Scholar